Abstract:
A chip package is provided. The chip package includes a device substrate, a first redistribution layer (RDL), a carrier base, and at least one conductive connection structure. The device substrate has at least one first through-via opening extending from the backside surface of the device substrate to the active surface of the device substrate. The first RDL is disposed on the backside surface of the device substrate and extends in the first through-via opening. The carrier base carries the device substrate, and has a first surface facing the backside surface of the device substrate and a second surface opposite the first surface. The conductive connection structure is disposed on the second surface of the carrier base and is electrically connected to the first RDL.
Abstract:
A chip package includes an application chip, a micro-electromechanical systems (MEMS) chip, a conductive element, a bonding wire, and a molding compound. The application chip has a conductive pad. The MEMS chip is located on the application chip, and includes a main body and a cap. The main body is located between the cap and the application chip. The main body has a conductive pad. The conductive element is located on the conductive pad of the main body of the MEMS chip. The bonding wire extends from the conductive element to the conductive pad of the application chip. The molding compound is located on the application chip and surrounds the MEMS chip. The conductive element and the bonding wire are located in the molding compound.
Abstract:
A chip package includes a semiconductor substrate, a first light-transmissive sheet, a second light-transmissive sheet, a first antenna layer, and a redistribution layer. The first light-transmissive sheet is disposed over the semiconductor substrate, and has a top surface facing away from semiconductor substrate and an inclined sidewall adjacent to the top surface. The second light-transmissive sheet is disposed over the first light-transmissive sheet. The first antenna layer is disposed between the first light-transmissive sheet and the second light-transmissive sheet. The redistribution layer is disposed on the inclined sidewall of the first light-transmissive sheet, and is in contact with an end of the first antenna layer.
Abstract:
Chip packages and methods for forming the same are provided. The method includes providing a substrate having a chip region and a scribe-line region surrounding the chip region and forming a dielectric layer on an upper surface of the substrate. A dummy structure is formed in the dielectric layer over the scribe-line region of the substrate and extends along edges of the chip region. The dummy structure includes a first stack of dummy metal layers and a second stack of dummy metal layers arranged concentrically from the inside to the outside. The method also includes performing a sawing process on a portion of the dielectric layer that surrounds the dummy structure, so as to form a saw opening through the dielectric layer. At least the first stack of dummy metal layers remains in the dielectric layer after the sawing process is performed.
Abstract:
An embodiment of this invention provides a chip scale sensing chip package module, comprising a chip scale sensing chip package, having a sensing chip with a first top substrate and a first bottom substrate opposite to the first top substrate, wherein the sensing chip has a sensing device and a plurality of conductive pads adjacent to the first top substrate, and a plurality of conductive structures connected to the conductive pads by a re-distribution layer adjacent to the first bottom surface; a touch plate having a color layer, comprising a base and a spacer formed on the base, wherein the spacer has a cavity with a bottom wall exposing part of the surface of the base and a side wall surrounding the bottom wall; and a first adhesive layer sandwich between the sensing chip and the touch plate to join the first top surface of the sensing chip to the bottom wall of the cavity of the touch plate and surround the sensing chip by the side wall of the cavity; and a print circuit board placed under the chip scale sensing chip package by bonding the conductive structure of the chip scale sensing chip package to the print circuit board.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. A temporary bonding layer is used to adhere a carrier to a first surface of a wafer. A second surface of the wafer is adhered to an ultraviolet tape on a frame, and the temporary bonding layer and the carrier are removed. A protection tape is adhered to the first surface of the wafer. An ultraviolet light is used to irradiate the ultraviolet tape. A dicing tape is adhered to the protection tape and the frame, and the ultraviolet tape is removed. A first cutter is used to dice the wafer from the second surface of the wafer, such that plural chips and plural gaps between the chips are formed. A second cutter with a width smaller than the width of the first cutter is used to cut the protection tape along the gaps.
Abstract:
A chip package including a semiconductor substrate is provided. A recess is in the semiconductor substrate and adjoins a side edge of the semiconductor substrate, wherein the semiconductor substrate has at least one spacer protruding from the bottom of the recess. A conducting layer is disposed on the semiconductor substrate and extends into the recess.
Abstract:
An embodiment of the invention provides a chip package which includes: a first chip; a second chip disposed on the first chip, wherein a side surface of the second chip is a chemically-etched surface; and a bonding bulk disposed between the first chip and the second chip such that the first chip and the second chip are bonded with each other.
Abstract:
A chip package is provided. The chip package includes a chip having an upper surface, a lower surface and a sidewall. The chip includes a sensing region or device region and a signal pad region adjacent to the upper surface. A shallow recess structure is located outside of the signal pad region and extends from the upper surface toward the lower surface along the sidewall. The shallow recess structure has at least a first recess and a second recess under the first recess. A redistribution layer is electrically connected to the signal pad region and extends into the shallow recess structure. A first end of a wire is located in the shallow recess structure and is electrically connected to the redistribution layer. A second end of the wire is used for external electrical connection. A method for forming the chip package is also provided.
Abstract:
A power MOSFET package includes a semiconductor substrate having opposite first and second surfaces, having a first conductivity type, and forming a drain region, a doped region extending downward from the first surface and having a second conductivity type, a source region in the doped region and having the first conductivity type, a gate overlying or buried under the first surface, wherein a gate dielectric layer is between the gate and the semiconductor substrate, a first conducting structure overlying the semiconductor substrate, having a first terminal, and electrically connecting the drain region, a second conducting structure overlying the semiconductor substrate, having a second terminal, and electrically connecting the source region, a third conducting structure overlying the semiconductor substrate, having a third terminal, and electrically connecting the gate, wherein the first, the second, and the third terminals are substantially coplanar, and a protection layer between the semiconductor substrate and the terminals.