Abstract:
Disclosed are IC package structures comprised of standard IC packages modified with separate circuit interconnection structures and disposed to interconnect either directly to other IC packages or to intermediate pedestal connectors which serve to support and interconnect various circuit elements, thus effectively allowing critical signals to bypass the generally less capable interconnection paths within standard interconnection substrates.
Abstract:
A method of making a microelectronic assembly includes providing a first microelectronic element having a first surface and a plurality of contacts exposed at the first surface; providing a second microelectronic element having a top surface and a plurality of contacts exposed at the top surface, forming a plurality of conductive elastomeric posts that connect at least some of the contacts of the first microelectronic element to at least some of the contacts of the second microelectronic element, and injecting a compliant material between the first surface of the first microelectronic element and the top surface of the second microelectronic element to form a compliant layer.
Abstract:
A method of electrically connecting a microelectronic component having a first surface bearing a plurality of contacts. The method including the steps of forming a subassembly by juxtaposing a connection component having a support structure and a plurality of elongated posts extending substantially parallel to one another from a first surface of the support structure with the microelectronic component so that the support structure overlies the surface of the component with the posts extending away from the component and electrically connecting the posts to the contacts of the microelectronic component.
Abstract:
An electrical connector. An electrical connector comprising a connector body having a first channel and a first conductive element extending through the first channel in a first tip section. The first tip section having a first moment arm that, when forced in contact with a first conductive surface, twists the first conductive element to produce a torsion force. The torsion force holds the first tip section in contact with the first conductive surface.
Abstract:
A microelectronic interposer is made by providing a sacrificial layer over the surface of a planar body. Apertures are formed passing through the body and the sacrificial layer. A layer of an electrically conductive structural material is deposited in each of the apertures and over the sacrificial layer, proximate to each aperture to thereby form contacts. The sacrificial layer is removed leaving the contacts with outwardly flaring peripheral portions spaced vertically above the surface of the planar body.
Abstract:
Disclosed are tapered dielectric and conductor structures which provide controlled impedance interconnection while signal conductor lines transition from finer pitches to coarser pitches thereby obviating electrical discontinuities generally associated with changes of circuit contact pitch. Also disclosed are methods for the construction of the devices and applications therefore.
Abstract:
A microelectronic package including an optoelectronic element having a front face including contacts and a rear surface; flexible conductive leads having first ends connected to the contacts and second ends connected to conductive pads adjacent the optoelectronic element; and an at least partially transparent encapsulant covering the optoelectronic element, the flexible leads and the conductive pads, the conductive pads being exposed on a bottom surface of the encapsulant, the bottom surface of the encapsulant defining a bottom of the package, wherein the encapsulant at the bottom of the package extends between the conductive pads.
Abstract:
A stacked microelectronic assembly includes a dielectric element and a first and second microelectronic element stacked one atop the other with the first microelectronic element disposed between the second microelectronic element and the dielectric. The dielectric element has opposed first and second surfaces with conductive features exposed at the first surface and terminals exposed on the second surface. Preferably, the contact-bearing face of the first microelectronic element confronts the first surface of the dielectric with at least some of the conductive features being movable with respect to the contacts or terminals. By providing such movable features, joining units have heights of about 300 microns or less may be joined to the terminals thereby reducing the overall height of the microelectronic assembly to 1.2 mm and less.
Abstract:
A method of electrically connecting a microelectronic component having a first surface bearing a plurality of contacts. The method including the steps of forming a subassembly by juxtaposing a connection component having a support structure and a plurality of elongated posts extending substantially parallel to one another from a first surface of the support structure with the microelectronic component so that the support structure overlies the surface of the component with the posts extending away from the component and electrically connecting the posts to the contacts of the microelectronic component.
Abstract:
A method of making resistors includes providing a sacrificial layer. Conductive material is then formed over a region of the sacrificial layer. Resistive material is then deposited over the first surface of the sacrificial layer such that the resistive material covers the sacrificial layer and the conductive material. A portion of the sacrificial layer is then removed to expose the conductive material. A method of making resistors includes the steps of providing a sacrificial layer, removing at least a portion of the sacrificial layer from regions of the sacrificial layer so as to create a plurality of cavities within the sacrificial layer, plating said cavities with a conductive material, disposing resistive material over the first surface of the sacrificial layer such that resistive material covers the sacrificial layer and said conductive material, and removing at least a portion of said sacrificial layer to expose the conductive material. In another embodiment, a method of making resistors includes the steps of providing a sacrificial layer having a roughened first surface and a second surface, depositing resistive material over the first surface of the sacrificial layer such that the resistive material covers the first surface of the sacrificial layer, and selectively etching the sacrificial layer to form electrodes.