Abstract:
A conductive bonding material comprising: a first metal particle; a second metal particle having an average particle diameter larger than an average particle diameter of the first metal particle; and a third metal particle having an average particle diameter larger than the average particle diameter of the first metal particle, a relative density larger than a relative density of the first metal particle, and a melting point higher than a melting point of the second metal particle.
Abstract:
A printed wiring board includes a first conductive paste forming a wiring pattern, and a second conductive paste including kneaded first conductive material and second conductive material whose particles are finer than those of the first conductive material.
Abstract:
A disclosed circuit board includes a substrate, a plurality of electrode pads formed on the substrate, and a groove formed between adjacent electrode pads on the substrate. Further, the electrode pads are surrounded by the groove to have an air space between the adjacent electrode pads.
Abstract:
A mount structure for mounting an electronic component on a circuit board includes a stress relieving unit including a center portion having a smaller cross section than a cross section of ends of the stress relieving unit; a first joint portion configured to join one end of the stress relieving unit onto an electrode pad of the electronic component; a second joint portion configured to join the other end of the stress relieving unit onto a connecting pad of the circuit board. Hollow spaces are provided between plural joint structures each of which includes the first joint portion, the stress relieving unit, and the second joint portion.
Abstract:
A surface acoustic wave device includes a piezoelectric substrate, an interdigital transducer (IDT) formed on the piezoelectric substrate, an interconnection electrode that is provided on the piezoelectric substrate and is connected to the IDT, the IDT being made of a metal identical to that of the IDT, an inorganic insulation layer that is provided on the piezoelectric substrate so that at least the interconnection electrode is exposed, an insulative resin layer that is located on an interface between the inorganic insulation layer and a portion of the interconnection electrode exposed from the inorganic insulation layer and is formed so as to cover a side surface of the interconnection electrode, and a metal layer that is provided on the interconnection electrode and the insulative resin layer.
Abstract:
A method of bonding a piezoelectric element and an electrode, including the steps of forming a first coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the piezoelectric element, and forming a second coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the electrode. The combination of the materials of the first and second coatings is preferably Au/Au, Au/Al, Zn/Cu, or Sn/Cu. The method further includes the step of bringing the first and second coatings into close contact with each other and heating them under pressure to form a metallic bond or intermetallic compound between the first and second coatings, thereby bonding the piezoelectric element and the electrode.
Abstract:
A semiconductor device comprises a semiconductor element having electrodes and metal bumps are attached to the electrodes. The metal bumps include copper cores and gold surface layers covering the cores. In addition, the metal bumps may include gold bump elements and solder bump elements connected together.
Abstract:
The present invention provides a soldering method and a soldered joint securing a strength of joint equivalent to soldering using a conventional Pb—Sn solder alloy without having a detrimental effect on the environment and without causing a rise in cost. A soldering method comprising a step of covering Cu electrodes of electronic equipment by a rust-proofing coating consisting of an organic compound including N and a step of forming soldered joints on the covered Cu electrodes, by using a solder material consisting of at least 2.0 wt % and less than 3 wt % of Ag, 0.5 to 0.8 wt % of Cu, and a balance of Sn and unavoidable impurities. The solder material used in the present invention further contains not more than 3 wt % in total of at least one element selected from the group consisting of Sb, In, Au, Zn, Bi, and Al.
Abstract:
A semiconductor device comprises a semiconductor element having electrodes and metal bumps are attached to the electrodes. The metal bumps include copper cores and gold surface layers covering the cores. In addition, the metal bumps may include gold bump elements and solder bump elements connected together.
Abstract:
A method of manufacturing a template having through-holes for attracting and supporting electrically conductive balls by vacuum suction is disclosed. The through-holes are formed by etching and the side walls of the through-holes are smoothed by irradiation, with laser beams, of the side walls of the through-holes. A template and metallic bumps can be formed using this method. Alternatively, the template can be formed in a two-layered structure.