摘要:
A semiconductor device capable of meeting the demand for fine-pitched wiring of semiconductor element and highly dense mounting thereof, as well as the demand for a thin structure thereof, which device being superior in the adhesion property of an insulating resin to be used for sealing a semiconductor element and a film carrier, and thus highly reliable. In FIG. 1, a conductive circuit (5) is embedded so that it will not be exposed at the both surfaces (6a, 6b) of an insulator layer (6), and conductive paths (7, 8) are formed in a pair from the both surfaces (5a, 5b) of the conductive circuit (5), the conductive paths slipping relative to each other in the direction of the surface of the conductive circuit (5). The conductive paths (7, 8) are respectively connected to bumps (9, 10), and the conductive circuit (5) and bumps (9, 10) are conducted via conductive paths (7, 8). The bump (9) formed on one end of the one conductive path (7) of the film carrier (2) contacts an electrode (12) of the semiconductor element (3) and is electrically connected, whereby the semiconductor element (3) is mounted on the film carrier (2). An insulating resin layer (4) is formed on one surface (6a) of the insulator layer (6) to cover the semiconductor element (3).
摘要:
A flexible printed substrate imparted with an adhesive property for loading on an external substrate, a double printed substrate having formed on both surfaces thereof a metal layer or a wiring circuit, and a multilayer substrate having a multilayer structure are disclosed. The flexible printed substrate comprises an insulating resin layer comprising a low-linear expansion polyimide resin layer and a thermoplastic polyimide resin layer, and a metal layer or a wiring circuit formed on the low-linear expansion polyimide resin layer of the insulating resin layer, wherein a mixed region of the polyimide resin components is formed in the interface between the low-linear expansion polyimide resin layer and the thermoplastic polyimide resin layer.
摘要:
A film carrier comprising, on a laminate of an insulating layer and a conductive circuit, a conductive part to be connected to an external substrate and an energy introduction part to supply an energy to connect a semiconductor element, a semiconductor device, and a method for mounting a semiconductor element. The present invention has enabled provision of fine-pitched or highly dense wiring of a semiconductor element, and assures easy and dependable electric construction of the present invention wherein an energy for connection is supplied from the energy introduction part to make a connection of a film carrier to semiconductor element is advantageous in that attenuation of the energy for connection due to an insulating layer occurs less, since the energy for connection can be directly introduced into conductive circuit, thus enabling efficient utilization of the energy, which in turn permits easy and efficient mounting of a semiconductor element.
摘要:
A method for fabrication of a probe includes the steps of: (1) forming a structure wherein a contact part formed on one side of an insulating flexible substrate and a conductor formed on either side or the inside of the flexible substrate are electrically continued, and (2) joining the flexible substrate and a rigid frame substrate capable of supporting the tension in the planar direction of the flexible substrate at the outer periphery thereof, by bonding them by lamination pressing after heating, or by heating after lamination pressing, thereby applying a planar tension to the flexible substrate enclosed by the rigid substrate.
摘要:
An anisotropic conductive film is disclosed, comprising an insulating film having fine through-holes independently piercing the film in the thickness direction, each of the through-holes being filled with a metallic substance in such a manner that at least one end of each through-hole has a bump-like projection of said metallic substance having a bottom area larger than the opening of the through-hole. The metallic substance serving as a conducting path is prevented from falling off, and sufficient conductivity can be thus assured.
摘要:
An anisotropic conductive film is disclosed, comprising an insulating film having fine through-holes independently piercing the film in the thickness direction, each of the through-holes being filled with a metallic substance in such a manner that at least one end of each through-hole has a bump-like projection of said metallic substance having a bottom area larger than the opening of the through-hole. The metallic substance serving as a conducting path is prevented from falling off, and sufficient conductivity can be thus assured.
摘要:
A wiring substrate, a film carrier, a semiconductor device made by using the film carrier, and a mounting structure comprising the semiconductor device are disclosed.The wiring substrate comprises:a conductor pattern which has a bonding pad and is formed on the rear surface of an insulating support;at least one of minute through-holes which are provided in a region of the insulating support where the bonding pad is in contact therewith, or which are provided a region of the insulating support where the bonding pad is in contact therewith and in the vicinity of the region, the through-holes running in the direction of the thickness of the insulating support;a conductive passage which is made of a metal material and which is formed in the through-holes that are provided in a region of the insulating support where the bonding pad is in contact therewith; anda bump-like metal protrusion which is formed on the conductive passage and which is protruded from the front surface of the insulating support.
摘要:
A strip-shaped polarizing film has a protective film strip conformably adhered to one surface thereof and a releasable liner conformably adhered to the other surface thereof and delivered from a film delivering station 1. After an appearance inspection, a lamination of the protective film strip and the polarizing film strip F is half-cut using a laser unit 11 to form an array of laminations each consisting of a protective film and a polarizing film F, with the releasable liner being left intact. Then, the polarizing films F are fed to a peeling mechanism 4. The peeling mechanism 4 feeds a forwardmost one the polarizing films F to a laminating mechanism 5 while peeling off the releasable liner therefrom by a knife-edged member. The forwardmost polarizing film F is laminated to a liquid-crystal panel W conveyed to the laminating mechanism by a panel transport apparatus 18 in synchronization of the feeding of the forwardmost polarizing film F.
摘要:
A strip-shaped polarizing film has a protective film strip conformably adhered to one surface thereof and a releasable liner conformably adhered to the other surface thereof and delivered from a film delivering station 1. After an appearance inspection, a lamination of the protective film strip and the polarizing film strip F is half-cut using a laser unit 11 to form an array of laminations each consisting of a protective film and a polarizing film F, with the releasable liner being left intact. Then, the polarizing films F are fed to a peeling mechanism 4. The peeling mechanism 4 feeds a forwardmost one the polarizing films F to a laminating mechanism 5 while peeling off the releasable liner therefrom by a knife-edged member. The forwardmost polarizing film F is laminated to a liquid-crystal panel W conveyed to the laminating mechanism by a panel transport apparatus 18 in synchronization of the feeding of the forwardmost polarizing film F.
摘要:
In a resin joined body including at least one member made of a resin material that forms a first resin layer and a second resin layer, the at least one of the first and second resin layers having the rear side from which the laser beam has been irradiated has an absorption constant of 50 to 5000 m−1 for the wavelength of the laser beam, and the fuse bonded portion is formed to have a relationship of X>Y, wherein a light transmittance of light passing from the first resin layer to the second resin layer via the fused portion is designated as X(%), and a light transmittance of light passing continuously from the first resin layer to the second resin layer via a portion other than the fused portion is designated as Y(%).