Abstract:
The invention provides a solder structure which is least likely to develop Sn whiskers and a method for forming such a solder structure. The solder structure includes an Sn alloy capable of a solid-liquid coexistent state and an Au (or Au alloy) coating covering at least part of the surface of the Sn alloy. The Au covering is a film that covers and coats at least part of the surface of the Sn alloy. As a preferable mode, the Au coating forms a netlike structure on the surface of the Sn alloy. The thickness of the Au coating is, for instance, 1 to 5 μm.
Abstract:
The invention provides a solder structure which is least likely to develop Sn whiskers and a method for forming such a solder structure. The solder structure includes an Sn alloy capable of a solid-liquid coexistent state and an Au (or Au alloy) coating covering at least part of the surface of the Sn alloy. The Au covering is a film that covers and coats at least part of the surface of the Sn alloy. As a preferable mode, the Au coating forms a netlike structure on the surface of the Sn alloy. The thickness of the Au coating is, for instance, 1 to 5 μm.
Abstract:
To reduce connection defects between a circuit substrate provided on a core substrate and a circuit to be mounted thereon, thereby improving reliability as a multilayered device mounting substrate. The device mounting substrate includes: a first circuit substrate composed of a substrate, an insulating layer formed on this substrate, and a first conductive layer (including conductive parts) formed on this insulating layer; and a second circuit substrate mounted on the first circuit substrate, being composed of a base, a second conductive layer (including conductive parts) formed on the bottom of the base, and a third conductive layer (including conductive parts) formed on the top of the base. Here, the first and second circuit substrates are bonded by pressure so that the first and second conductive parts are laminated and embedded together into the insulating layer. The first and second conductive parts form connecting areas in the insulating layer, thereby connecting the first and second circuit substrates electrically.
Abstract:
A circuit device in which highly reliable sealing with a resin can be achieved is provided. A semiconductor chip is provided on one surface of an insulating resin film and a conductive layer that is electrically connected to the semiconductor chip is provided on another surface of the insulating resin film. A solder ball (electrode) for the connection to a circuit board is provided on the conductive layer. An insulating resin layer is further provided between the conductive layer and the circuit board to embed the electrode therein. In this manner, the circuit device is formed. A side face of the semiconductor chip is covered with the insulating resin film.
Abstract:
An electrode for a semiconductor device is formed on the mounting surface (particularly, the outer periphery thereof) of a semiconductor substrate in a semiconductor module. In order to secure a large gap between the electrodes, an insulating layer is formed on the electrode. Also formed are a plurality of bumps penetrating the insulating layer and connected to the electrode, and a rewiring pattern integrally formed with the bumps. The rewiring pattern includes a bump area and a wiring area extending contiguously with the bump area.The insulating layer is formed to have a concave upper surface in an interval between the bumps, and the wiring area of the rewiring pattern is formed to fit that upper surface. The wiring area of the rewiring pattern is formed to be depressed toward the semiconductor substrate in relation to the bump area of the rewiring pattern.
Abstract:
A circuit device of the present invention includes a first element which is placed parallel to a first reference plane and which senses a physical quantity, and a second element placed parallel to a second reference plane which intersects the first reference plane at a predetermined angle. The circuit device further includes a sealing resin for integrally sealing the first and second elements, a first conductive pattern which is electrically connected to the first element and placed parallel to the first reference plane and which has a back surface exposed from the sealing resin, and a second conductive pattern which is electrically connected to the second element and placed parallel to the second reference plane and which has a back surface exposed from the sealing resin.
Abstract:
In a semiconductor module, adhesion between an insulating base material and an insulator provided on the insulating base material, for example a sealing resin of the semiconductor element, is to be improved.A plurality of interconnect layers, each including an interlayer dielectric film 405 and a copper interconnect 407, is stacked and a solder resist layer 408 is formed on an uppermost layer. Elements 410a and 410b are formed on a surface of the solder resist layer 408. The elements 410a and 410b are molded in a molding resin 415. The surface of the solder resist layer 408 is modified by plasma processing under a specific condition so that minute projections are formed thereon. Such surface of the solder resist layer 408 is processed such that a value of y/x becomes not less than 0.4, where x represents a detected intensity at a binding energy of 284.5 eV and y represents a detected intensity at a binding energy of 286 eV, by an X-ray photoelectric spectroscopy spectrum.
Abstract:
A method for manufacturing a semiconductor module includes: a first process of forming a conductor on one face of an insulating layer; a second process of exposing the conductor from the other face of the insulating layer; a third process of providing a first wiring layer on an exposed area of the conductor and on the other face of the insulating layer; a fourth process of preparing a substrate on which a circuit element is formed, the second wiring being formed on the substrate; and a fifth process of embedding the conductor in the insulating layer by press-bonding the insulating layer and the substrate in a state where the conductor on which the first wiring layer is provided by the third process is disposed counter to the second wiring layer. Wiring is formed without causing damaging to the circuit element.
Abstract:
An adhesive film is formed on an electrode film, and a coating film is formed thereon. Nickel, chrome, molybdenum, tungsten, aluminum or an alloy of them is used as a constituent material of the adhesive film. Gold, silver, platinum or an alloy of them is used as a constituent material of the coating film.
Abstract:
To reduce connection defects between a circuit substrate provided on a core substrate and a circuit to be mounted thereon, thereby improving reliability as a multilayered device mounting substrate. The device mounting substrate includes: a first circuit substrate composed of a substrate, an insulating layer formed on this substrate, and a first conductive layer (including conductive parts) formed on this insulating layer; and a second circuit substrate mounted on the first circuit substrate, being composed of a base, a second conductive layer (including conductive parts) formed on the bottom of the base, and a third conductive layer (including conductive parts) formed on the top of the base. Here, the first and second circuit substrates are bonded by pressure so that the first and second conductive parts are laminated and embedded together into the insulating layer. The first and second conductive parts form connecting areas in the insulating layer, thereby connecting the first and second circuit substrates electrically.