摘要:
A method for forming preferably Pb-lead C4 connections or capture pads with ball limiting metallization on an integrated circuit chip by using a damascene process and preferably Cu metallization in the chip and in the ball limiting metallization for compatibility. In two one embodiment, the capture pad is formed in the top insulating layer and it also serves as the final level of metallization in the chip.
摘要:
Wire-bonded semiconductor structures using organic insulating material and methods of manufacture are disclosed. The method includes forming a metal wiring layer in an organic insulator layer. The method further includes forming a protective layer over the organic insulator layer. The method further includes forming a via in the organic insulator layer over the metal wiring layer. The method further includes depositing a metal layer in the via and on the protective layer. The method further includes patterning the metal layer with an etch chemistry that is damaging to the organic insulator layer.
摘要:
Disclosed is a chip and method of forming the chip with improved conductive pads that allow for flexible C4 connections with a chip carrier or with another integrated circuit chip. The pads have a three-dimensional geometric shape (e.g., a pyramid or cone shape) with a base adjacent to the surface of the chip, a vertex opposite the base and, optionally, mushroom-shaped cap atop the vertex. Each pad can include a single layer of conductive material or multiple layers of conductive material (e.g., a wetting layer stacked above a non-wetting layer). The pads can be left exposed to allow for subsequent connection to corresponding solder bumps on a chip carrier or a second chip. Alternatively, solder balls can be positioned on the conductive pads to allow for subsequent connection to corresponding solder-paste filled openings on a chip carrier or a second chip.
摘要:
The invention provides a semiconductor chip structure having at least one aluminum pad structure and a polyimide buffering layer under the aluminum pad structure, wherein the polyimide buffering layer is self-aligned to the aluminum pad structure, and a method of forming the same. The method includes forming a polyimide buffering layer on a substrate, forming an aluminum pad structure on the buffering layer, and, using the aluminum pad structure as a mask, etching the substrate to remove the polyimide buffering layer from the substrate everywhere except under the aluminum pad structure.
摘要:
A topographical feature is formed proximate to a conductive bond pad that is used to couple a solder bump to a semiconductor die. The topographical feature is separated from the conductive bond pad by a gap. In one embodiment, the topographical feature is formed at a location that is slightly beyond the perimeter of the solder bump, wherein an edge of the bump is aligned vertically to coincide with the gap separating the conductive bond pad from the topographical feature. The topographical feature provides thickness enhancement of a non-conductive layer disposed over the semiconductor die and the conductive bond pad and stress buffering.
摘要:
Disclosed are embodiments of a structure having a metal layer with top surface and sidewall passivation and a method of forming the structure. In one embodiment, a metal layer is electroplated onto a portion of a seed layer at the bottom of a trench. Then, the sidewalls of the metal layer are exposed and, for passivation, a second metal layer is electroplated onto the top surface and sidewalls of the metal layer. In another embodiment, a trench is formed in a dielectric layer. A seed layer is formed over the dielectric layer, lining the trench. A metal layer is electroplated onto the portion of the seed layer within the trench and a second metal layer is electroplated onto the top surface of the metal layer. Thus, in this case, passivation of the top surface and sidewalls of the metal layer is provided by the second metal layer and the dielectric layer, respectively.
摘要:
In one embodiment, a collar structure includes a non-conductive layer that relieves stress around the perimeter of each of the solder balls that connect the semiconductor die to the semiconductor chip package substrate, and another non-conductive layer placed underneath to passivate the entire surface of the die.
摘要:
A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a dielectric material formed between a design sensitive structure and a passivation layer. The design sensitive structure comprising a lower wiring layer electrically and mechanically connected to a higher wiring level by a via farm. A method and structure is also provided.
摘要:
A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a dielectric material formed between a design sensitive structure and a passivation layer. The design sensitive structure comprising a lower wiring layer electrically and mechanically connected to a higher wiring level by a via farm. A method and structure is also provided.
摘要:
Disclosed are embodiments of a structure having a metal layer with top surface and sidewall passivation and a method of forming the structure. In one embodiment, a metal layer is electroplated onto a portion of a seed layer at the bottom of a trench. Then, the sidewalls of the metal layer are exposed and, for passivation, a second metal layer is electroplated onto the top surface and sidewalls of the metal layer. In another embodiment, a trench is formed in a dielectric layer. A seed layer is formed over the dielectric layer, lining the trench. A metal layer is electroplated onto the portion of the seed layer within the trench and a second metal layer is electroplated onto the top surface of the metal layer. Thus, in this case, passivation of the top surface and sidewalls of the metal layer is provided by the second metal layer and the dielectric layer, respectively.