摘要:
A method for forming at least one Ag or Ag based alloy feature in an integrated circuit, including providing a blanket layer of Ag or Ag based alloy in a multi-layer structure on a substrate. The method further includes providing a hard mask layer over the blanket layer of Ag or Ag based alloy. The method further includes performing an etch of the blanket layer of Ag or Ag based alloy, wherein a portion of the blanket layer of Ag or Ag based alloy that remains after the etch forms one or more conductive lines. The method further includes forming a liner that surrounds the one or more conductive lines. The method further includes depositing a dielectric layer on the multi-layer structure.
摘要:
Embodiments of a semiconductor wafer having wafer-level die attach metallization on a back-side of the semiconductor wafer, resulting semiconductor dies, and methods of manufacturing the same are disclosed. In one embodiment, a semiconductor wafer includes a semiconductor structure and a front-side metallization that includes front-side metallization elements for a number of semiconductor die areas. The semiconductor wafer also includes vias that extend from a back-side of the semiconductor structure to the front-side metallization elements. A back-side metallization is on the back-side of the semiconductor structure and within the vias. For each via, one or more barrier layers are on a portion of the back-side metallization that is within the via and around a periphery of the via. The semiconductor wafer further includes wafer-level die attach metallization on the back-side metallization other than the portions of the back-side metallization that are within the vias and around the peripheries of the vias.
摘要:
Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
摘要:
An electrically conductive barrier layer is formed on a semiconductor substrate such that the barrier layer covers a first device terminal. A seed layer is formed on the barrier layer. The seed includes a noble metal other than gold. The substrate is masked so that a first mask opening is laterally aligned with the first terminal. An unmasked portion of the seed layer is electroplated using a gold electrolyte solution so as to form a first gold metallization structure in the first mask opening. The mask, the masked portions of the seed layer, and the barrier layer are removed. The noble metal from the unmasked portion of the seed layer is diffused into the first gold metallization structure. The first gold metallization structure is electrically connected to the first terminal via the barrier layer.
摘要:
Semiconductor devices and fabrication methods are provided. In a semiconductor device, a semiconductor substrate includes a first electrode layer having a top surface coplanar with a top surface of the semiconductor substrate. A sacrificial layer is formed on the semiconductor substrate and the first electrode layer. A first mask layer made of a conductive material is formed on the sacrificial layer. The first mask layer and the sacrificial layer are etched until a surface of the first electrode layer is exposed to form openings through the first mask layer and the sacrificial layer. A cleaning process is performed to remove etch byproducts adhered to a surface of the first mask layer and adhered to sidewalls and bottom surfaces of the openings. Conductive plugs are formed in the openings after the cleaning process.
摘要:
An ESD protection device including a Si substrate with an ESD protection circuit formed at the surface of the substrate; pads formed on the Si substrate; a rewiring layer opposed to the surface of the Si substrate, which includes terminal electrodes electrically connected to the pads. The rewiring layer includes a SiN protection film formed on the surface of the Si substrate to cover parts of the pads except regions in contact with openings (contact holes) formed in a resin layer, and the resin layer that is lower in dielectric constant than the SiN protection film, and formed between the SiN protection film and the terminal electrodes. Thus, provided is a semiconductor device which can reduce the generation of parasitic capacitance, and eliminates variation in parasitic capacitance generated.
摘要:
A nitride-based semiconductor device of the present invention includes: a nitride-based semiconductor multilayer structure 20 which includes a p-type semiconductor region with a surface 12 being inclined from the m-plane by an angle of not less than 1° and not more than 5°; and an electrode 30 provided on the p-type semiconductor region. The p-type semiconductor region is formed by an AlxInyGazN (where x+y+z=1, x≧0, y≧0, and z≧0) layer 26. The electrode 30 includes a Mg layer 32 and an Ag layer 34 provided on the Mg layer 32. The Mg layer 32 is in contact with the surface 12 of the p-type semiconductor region of the semiconductor multilayer structure 20.
摘要翻译:本发明的氮化物系半导体器件包括:氮化物系半导体多层结构体20,其具有p型半导体区域,表面12从m面倾斜不小于1°的角度, 超过5°; 以及设置在p型半导体区域上的电极30。 p型半导体区域由Al x In y Ga z N(其中x + y + z = 1,x≥0,y≥0和z≥0)层26形成。电极30包括Mg层32和Ag层34 设置在Mg层32上.Mg层32与半导体多层结构体20的p型半导体区域的表面12接触。
摘要:
An anti-fuse structure is provided in which an anti-fuse material liner is embedded within one of the openings provided within an interconnect dielectric material. The anti-fuse material liner is located between a first conductive metal and a second conductive metal which are also present within the opening. A diffusion barrier liner separates the first conductive metal from any portion of the interconnect dielectric material. The anti-fuse structure is laterally adjacent an interconnect structure that is formed within the same interconnect dielectric material as the anti-fuse structure.
摘要:
Provided are a thin film transistor substrate having a transparent electroconductive film in which residues and so on resulting etching are hardly generated; a process for producing the same; and a liquid crystal display using this thin film transistor substrate.A thin film transistor substrate, comprising a transparent substrate, a source electrode formed over the transparent substrate, a drain electrode formed over the transparent substrate, and a transparent pixel electrode formed over the transparent substrate, wherein the transparent pixel electrode is a transparent electroconductive film which is made mainly of indium oxide, and further comprises one or two or more oxides selected from tungsten oxide, molybdenum oxide, nickel oxide and niobium oxide, and the transparent pixel electrode is electrically connected to the source electrode or the drain electrode; a process for producing the same; and a liquid crystal display using this thin film transistor substrate.
摘要:
A die-bonding method is suitable for die-bonding a LED chip having a first metal thin-film layer to a substrate. The method includes forming a second metal thin film layer on a surface of the substrate; forming a die-bonding material layer on the second metal thin film layer; placing the LED chip on the die-bonding material layer with the first metal thin film layer contacting the die-bonding material layer; heating the die-bonding material layer at a liquid-solid reaction temperature for a pre-curing time, so as to form a first intermetallic layer and a second intermetallic layer; and heating the die-bonding material layer at a solid-solid reaction temperature for a curing time, so as to perform a solid-solid reaction. The liquid-solid reaction temperature and the solid-solid reaction temperature are both lower than 110° C., and a melting point of the first and second intermetallic layers after the solid-solid reaction is higher than 200° C.