Abstract:
A method of manufacturing a laminate electronic device is disclosed. One embodiment provides a carrier, the carrier defining a first main surface and a second main surface opposite to the first main surface. The carrier has a recess pattern formed in the first main surface. A first semiconductor chip is attached on one of the first and second main surface. A first insulating layer overlying the main surface of the carrier on which the first semiconductor chip is attached and the first semiconductor chip is formed. The carrier is then separated into a plurality of parts along the recess pattern.
Abstract:
In a conventional electronic device and a method of manufacturing the same, reduction in cost of the electronic device is hindered because resin used in an interconnect layer on the solder ball side is limited. The electronic device includes an interconnect layer (a first interconnect layer) and an interconnect layer (a second interconnect layer). The second interconnect layer is formed on the undersurface of the first interconnect layer. The second interconnect layer is larger in area seen from the top than the first interconnect layer and is extended to the outside from the first interconnect layer.
Abstract:
A method for manufacturing a circuit board system includes attaching (501), to a circuit board, electrical components that constitute together with the circuit board a first functional entity and a second functional entity that are disconnected from each other so that operations of the first and second functional entities are substantially free from mutual interactions. The method includes directing (502) electrical activity, for example testing and/or data loading, to the first functional entity and/or to the second functional entity. Subsequently, the method includes providing (503) at least one galvanic connection between the first and second functional entities by pushing one or more press-fit pins in holes of the circuit board in order to enable the first and second functional entities to co-operate with each other. The method allows functional entity-specific testing, data loading, and other electrical activity after e.g. a soldering process and prior to possible functionality testing (504).
Abstract:
Methods and structures are provided for implementing feed-through and domain isolation using ferrite and containment barriers. A vertical isolator is provided between a first domain and a second domain on a printed circuit board with signals passing between the first domain and the second domain. The vertical isolator is placed over a domain separation gap between the first and second domains in the printed circuit board, the vertical isolator having a vertical isolation barrier between a first vertical plate coupled to the first domain and a second vertical plate coupled to the second domain. The vertical isolation barrier is formed of a unitary ferrite block or a non-conductive magnetic absorber material. A plurality of capacitance feed-through plates and a dielectric material are provided within the vertical isolator.
Abstract:
An electrical circuit with large creepage isolation distances is provided. In some embodiments, the electrical circuit is capable of increasing creepage isolation distances by many multiples over traditional electrical circuits. In one embodiment, an electrical circuit comprises a ground circuit optically coupled to a floating circuit, and an isolated circuit optically coupled to the floating circuit. The circuits can be optically coupled with opto-isolators, for example. The isolated circuit can have a creepage isolation distance at least twice as large as a traditional circuit. In some embodiments, “n” number of floating circuits can be optically coupled between the ground circuit and the isolated circuit to increase the total creepage isolation distance by a factor of “n”. Methods of use are also described.
Abstract:
A method of manufacturing a circuit board is described herein. The method may include adding a resin, forming first and second fiberglass fibers, and forming first and second signal line traces capable of transmitting electrical signals. In some examples, a ratio between fiberglass and resin material near the first signal line trace is similar to a ratio between fiberglass and resin material near the second signal line trace. In some examples, the first and second fiberglass fibers diagonally cross near the first and second signal line traces. In some examples, the first and second fiberglass fibers cross near the first and second signal line traces in a zig-zag pattern.
Abstract:
A voltage measurement circuit is operative to measure a high voltage AC signal and includes a capacitive divider circuit and a compensator circuit. The capacitive divider circuit includes first and second inputs, across which, in use, is received a high voltage AC signal and also includes second and third capacitors. First and second plates of each of the first, second and third capacitors are defined by conductive layers of a printed circuit board and the dielectric of each of the first, second and third capacitors being defined by a non-conducting part of the printed circuit board. A compensator circuit has a configurable transfer function and includes an input connected across the first and second plates of the third capacitor and an output. The compensator circuit is operative to change a voltage received at its input in accordance with the transfer function and to provide the changed voltage at its output.
Abstract:
An integrated circuit structure includes a substrate, a photosensitive molding on a first side of the substrate, a via formed in the molding, and a conformable metallic layer deposited over the first side of the substrate and in the via. A through via may be formed through the substrate aligned with the via in the molding with an electrically conductive liner deposited in the through via in electrical contact with the conformable metallic layer. The integrated circuit structure may further include a connector element such as a solder ball on an end of the through via on a second side of the substrate opposite the first side. The integrated circuit structure may further include a die on the first side of the substrate in electrical contact with another through via or with a redistribution layer.
Abstract:
An optical transceiver of the present invention comprising an OSA, a circuit board, and a flexible substrate connecting these, in which the flexible substrate has high-speed signal lines and other lines other than the high speed signal lines provided separated from each other on the same surface, a ground layer placed apart and opposite these, and a resistive layer placed apart and opposite the high-speed signal lines, the other lines and the ground layer. High-speed signal and the resistive layer are opposite at least a part of the other lines.
Abstract:
A module includes a circuit board, a first and a second circuit block mounted on the top surface of the circuit board, and a first boundary formed between these circuit blocks. The module further includes a first metal piece and a resin part. The first metal piece is mounted on the first boundary. The resin part is provided, on its upper surface, with a first groove in a position corresponding to the first metal piece. The first groove includes a first exposed portion in which the first metal piece is partially exposed from the resin part and is connected to a shielded conductor.