Abstract:
The present disclosure relates to a tool arrangement and method to reduce warpage within a package-on-package semiconductor structure, while minimizing void formation within an electrically-insulating adhesive which couples the packages. A pressure generator and a variable frequency microwave source are coupled to a process chamber which encapsulates a package-on-package semiconductor structure. The package-on-package semiconductor structure is simultaneously heated by the variable frequency microwave source at variable frequency, variable temperature, and variable duration and exposed to an elevated pressure by the pressure generator. This combination for microwave heating and elevated pressure limits the amount of warpage introduced while preventing void formation within an electrically-insulating adhesive which couples the substrates of the package-on-package semiconductor structure.
Abstract:
A package-on-package (PoP) device including a substrate having an array of contact pads arranged around a periphery of the substrate, a logic chip mounted to the substrate inward of the array of contact pads, and non-solder bump structures mounted on less than an entirety of the contact pads available.
Abstract:
A method includes placing a first package component over a vacuum boat, wherein the vacuum boat comprises a hole, and wherein the first package component covers the hole. A second package component is placed over the first package component, wherein solder regions are disposed between the first and the second package components. The hole is vacuumed, wherein the first package component is pressed by a pressure against the vacuum boat, and wherein the pressure is generated by a vacuum in the hole. When the vacuum in the hole is maintained, the solder regions are reflowed to bond the second package component to the first package component.
Abstract:
A method includes dispensing an underfill between a first package component and a second package component, wherein the first package component is placed on a lower jig, and the second package component is over and bonded to the first package component. A through-opening is in the lower jig and under the first package component. The underfill is cured, wherein during the step of curing the underfill, a force is applied to flatten the first package component. The force is applied by performing an action selected from the group consisting of vacuuming and air blowing through the through-opening.
Abstract:
A method includes loading a first package component on a concave boat, and placing a second package component over the first package component. A load clamp is placed over the second package component, wherein the load clamp is supported by a temperature-variable spacer of the concave boat. A reflow step is performed to bond the second package component to the first package component. During a temperature-elevation step of the reflow step, the temperature-variable spacer is softened in response to an increase in temperature, and a height of the softened temperature-variable spacer is reduced, until the load clamp is stopped by a rigid spacer of the concave boat.
Abstract:
A semiconductor package includes a workpiece with a conductive trace and a chip with a conductive pillar. The chip is attached to the workpiece and a solder joint region is formed between the conductive pillar and the conductive trace. The silver (Ag) content in the solder layer is between 0.5 and 1.8 weight percent.
Abstract:
A package-on-package (PoP) structure comprises a first package and a second package. The first package comprises a first die, a second die, and a core material. The core material has a first surface and a second surface. A first redistribution layer (RDL) is on the first surface, and a second RDL is on the second surface. The first die is disposed in the core material between the first surface and the second surface. The second die is coupled to one of the first RDL and the second RDL. The second package comprises a third die and an interposer. The interposer has a first side and a second side. The third die is coupled to the second side of the interposer. The first package is coupled to the second package by first electrical connectors coupled to the second side of the interposer and the first RDL.
Abstract:
A method of a semiconductor package includes providing a substrate having a conductive trace coated with an organic solderability preservative (OSP) layer, removing the OSP layer from the conductive trace, and then coupling a chip to the substrate to form a semiconductor package.
Abstract:
A method of forming a device includes providing a substrate, and forming a solder bump over the substrate. A minor element is introduced to a region adjacent a top surface of the solder bump. A re-flow process is then performed to the solder bump to drive the minor element into the solder bump.
Abstract:
An embodiment of the disclosure includes a conductive pillar on a semiconductor die. A substrate is provided. A bond pad is over the substrate. A conductive pillar is over the bond pad. The conductive pillar has a top surface, edge sidewalls and a height. A cap layer is over the top surface of the conductive pillar. The cap layer extends along the edge sidewalls of the conductive pillar for a length. A solder material is over a top surface of the cap layer.