Abstract:
A device and method for localizing underfill includes a substrate, a plurality of dies, and underfill material. The substrate includes a plurality of contacts and a plurality of cavities separated by a plurality of mesas. The plurality of dies is mounted to the substrate using the plurality of contacts. The underfill material is located between the substrate and the dies. The underfill material is localized into a plurality of regions using the mesas. Each of the contacts is located in a respective one of the cavities. In some embodiments, the substrate further includes a plurality of channels interconnecting the cavities. In some embodiments, the substrate further includes a plurality of intra-cavity mesas for further localizing the underfill material. In some embodiments, outer edges of a first one of the dies rest on first mesas located on edges of a first one of the cavities.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
In one embodiment, a method for making a 3D Metal-Insulator-Metal (MIM) capacitor includes providing a substrate having a surface, forming an array of upstanding rods or ridges on the surface, depositing a first layer of an electroconductor on the surface and the array of rods or ridges, coating the first electroconductive layer with a layer of a dielectric, and depositing a second layer of an electroconductor on the dielectric layer. In some embodiments, the array of rods or ridges can be made of a photoresist material, and in others, can comprise bonded wires.
Abstract:
In a microelectronic component having conductive vias (114) passing through a substrate (104) and protruding above the substrate, conductive features (120E.A, 120E.B) are provided above the substrate that wrap around the conductive vias' protrusions (114′) to form capacitors, electromagnetic shields, and possibly other elements. Other features and embodiments are also provided.
Abstract:
A contact pad includes a solder-wettable porous network (310) which wicks the molten solder (130) and thus restricts the lateral spread of the solder, thus preventing solder bridging between adjacent contact pads.
Abstract:
A solder connection may be surrounded by a solder locking layer (1210, 2210) and may be recessed in a hole (1230) in that layer. The recess may be obtained by evaporating a vaporizable portion (1250) of the solder connection. Other features are also provided.
Abstract:
In a microelectronic component having conductive vias (114) passing through a substrate (104) and protruding above the substrate, conductive features (120E.A, 120E.B) are provided above the substrate that wrap around the conductive vias' protrusions (114′) to form capacitors, electromagnetic shields, and possibly other elements. Other features and embodiments are also provided.
Abstract:
A device and method of forming the device that includes cavities formed in a substrate of a substrate device, the substrate device also including conductive vias formed in the substrate. Chip devices, wafers, and other substrate devices can be mounted to the substrate device. Encapsulation layers and materials may be formed over the substrate device in order to fill the cavities.
Abstract:
A method of forming a semiconductor package includes providing a substrate having one or more conductive elements disposed therein. Each conductive element extends from a first surface of the substrate toward a second surface of the substrate extending beyond the second surface. The second surface comprises one or more substrate regions not occupied by a conductive element. A first die is attached within a substrate region, and the first die is coupled to at least one of the conductive elements. The first die may be coupled to at least one of the conductive elements by a wire bond connection. Alternatively, an RDL is formed over the second surface, and the first die is coupled to at least one conductive element through the RDL. A second die may be attached to an outer surface of the RDL, and the second die is electrically coupled to the first die through the RDL.
Abstract:
In a microelectronic component having conductive vias (114) passing through a substrate (104) and protruding above the substrate, one or more conductive features (120E.A, 120E.B, or both) are provided above the substrate that wrap around the conductive vias' protrusions (114′) to form capacitors, electromagnetic shields, and possibly other elements. Other features and embodiments are also provided.