Abstract:
A method for packaging a semiconductor device (23) to form a semiconductor component (10). A die attach material (17) is disposed on a flange (11). A semiconductor chip (23) is bonded to the die attach material (17). After disposing the die attach material (17) on the flange (11), an insulator material (28) is coupled to the flange (11). A leadframe (32) is coupled to the semiconductor chip (23) via a plurality of wirebonds (36). The wirebonds (36) and the semiconductor chip (23) are protected by a lid (37).
Abstract:
A semiconductor device and a method of manufacturing the same include a die and a planar thermal layer, and a thick-silver layer having a thickness of at least four (4) micrometers disposed directly onto a first planar side of the planar thermal layer, as well as a metallurgical die-attach disposed between the thick-silver layer and the die, the metallurgical die-attach directly contacting the thick-silver layer.
Abstract:
An electronic device includes a semiconductor die having a lower surface, a sintered metallic layer underlying the lower surface of the semiconductor die, a thermally conductive flow layer underlying the sintered metallic layer, and a thermally conductive substrate underlying the thermally conductive flow layer.
Abstract:
A radiation device and related method are presented. The radiation device includes a body. The body includes a threaded portion configured to engage with a threaded opening in an engine and an open interior volume. The radiation device includes a ground electrode coupled to the body, a substrate disposed within the open interior volume in the body, and a radio frequency generator on the substrate. The radio frequency generator is configured to receive an input signal and, in response to the input signal, generate plasma energy between the body and the ground electrode.
Abstract:
A radiation device and related method are presented. The radiation device includes a body. The body includes a threaded portion configured to engage with a threaded opening in an engine and an open interior volume. The radiation device includes a ground electrode coupled to the body, a substrate disposed within the open interior volume in the body, and a radio frequency generator on the substrate. The radio frequency generator is configured to receive an input signal and, in response to the input signal, generate plasma energy between the body and the ground electrode.
Abstract:
A semiconductor device package that incorporates a combination of ceramic, organic, and metallic materials that are coupled using silver is provided. The silver is applied in the form of fine particles under pressure and a low temperature. After application, the silver forms a solid that has a typical melting point of silver, and therefore the finished package can withstand temperatures significantly higher than the manufacturing temperature. Further, since the silver is an interfacial material between the various combined materials, the effect of differing material properties between ceramic, organic, and metallic components, such as coefficient of thermal expansion, is reduced due to low temperature of bonding and the ductility of the silver.
Abstract:
A packaged semiconductor device may include a termination surface having terminations configured as leadless interconnects to be surface mounted to a printed circuit board. A first flange has a first surface and a second surface. The first surface provides a first one of the terminations, and the second surface is opposite to the first surface. A second flange also has a first surface and a second surface, with the first surface providing a second one of the terminations, and the second surface is opposite to the first surface. A die is mounted to the second surface of the first flange with a material having a melting point in excess of 240° C. An electrical interconnect extends between the die and the second surface of the second flange opposite the termination surface, such that the electrical interconnect, first flange and second flange are substantially housed within a body.
Abstract:
Embodiments of semiconductor devices (e.g., RF devices) include a substrate, an isolation structure, an active device, a lead, and a circuit. The isolation structure is coupled to the substrate, and includes an opening. An active device area is defined by a portion of the substrate surface that is exposed through the opening. The active device is coupled to the substrate surface within the active device area. The circuit is electrically coupled between the active device and the lead. The circuit includes one or more elements positioned outside the active device area (e.g., physically coupled to the isolation structure and/or under the lead). The elements positioned outside the active device area may include elements of an envelope termination circuit and/or an impedance matching circuit. Embodiments also include method of manufacturing such semiconductor devices.
Abstract:
A packaged leadless semiconductor device (20) includes a heat sink flange (24) to which semiconductor dies (26) are coupled using a high temperature die attach process. The semiconductor device (20) further includes a frame structure (28) pre-formed with bent terminal pads (44). The frame structure (28) is combined with the flange (24) so that a lower surface (36) of the flange (24) and a lower section (54) of each terminal pad (44) are in coplanar alignment, and so that an upper section (52) of each terminal pad (44) overlies the flange (24). Interconnects (30) interconnect the die (26) with the upper section (52) of the terminal pad (44). An encapsulant (32) encases the frame structure (28), flange (24), die (26), and interconnects (30) with the lower section (54) of each terminal pad (44) and the lower surface (36) of the flange (24) remaining exposed from the encapsulant (32).
Abstract:
A method of making a mounted gallium nitride (GaN) device includes obtaining a device structure comprising a silicon layer, a silicon carbide (SiC) layer over the silicon layer, and a GaN layer over the SiC layer. The GaN layer is processed to form an active layer of active devices and interconnect over the GaN layer. After the step of processing the GaN layer, a gold layer is formed on the silicon layer. The device structure is attached to a heat sink structure using the gold layer. The mounted GaN device includes the SiC layer over the polysilicon layer and the GaN layer over the SiC layer. The active layer is over the GaN layer.