摘要:
A package includes a die, an encapsulant, and a capacitor. The package has a package first side and a package second side. The die has a die first side corresponding to the package first side, and has a die second side corresponding to the package second side. The die first side is opposite the die second side. The encapsulant surrounds the die. The capacitor includes a first plate and a second plate in the encapsulant, and opposing surfaces of the first plate and the second plate extend in a direction from the package first side to the package second side. The external conductive connectors are attached to at least one of the package first side and the package second side.
摘要:
Solder on slot connections in package on package structures. An apparatus includes a substrate having a front side surface and a back side surface; a first passivation layer disposed over at least one of the front side and back side surfaces; at least one via opening formed in the first passivation layer; a conductor layer disposed over the first passivation layer, coupled to the at least one via and forming a conductive trace on the surface of the first passivation layer; a second passivation layer formed over the conductor layer; and at least one slot opening formed in the second passivation layer and exposing a portion of the conductive trace for receiving a solder connector. In additional embodiments the substrate may be a semiconductor wafer. Methods for forming the structures are disclosed.
摘要:
A package-on-package (PoP) comprises a substrate with a plurality of substrate traces, a first function chip on top of the substrate connected to the substrate by a plurality of bond-on-trace connections, and a second function chip on top of the first function chip, directly connected to the substrate. Another package-on-package (PoP) comprises: a substrate with a plurality of substrate traces, a first function chip on top of the substrate connected to the substrate by a plurality of solder mask defined (SMD) connections formed on SMD bonding pads connected to solder bumps, and a second function chip on top of the first function chip, directly connected to the substrate by a plurality of bond-on-trace connections.
摘要:
A T-shaped post for semiconductor devices is provided. The T-shaped post has an under-bump metallization (UBM) section and a pillar section extending from the UBM section. The UBM section and the pillar section may be formed of a same material or different materials. In an embodiment, a substrate, such as a die, wafer, printed circuit board, packaging substrate, or the like, having T-shaped posts is attached to a contact of another substrate, such as a die, wafer, printed circuit board, packaging substrate, or the like. The T-shaped posts may have a solder material pre-formed on the pillar section such that the pillar section is exposed or such that the pillar section is covered by the solder material. In another embodiment, the T-shaped posts may be formed on one substrate and the solder material formed on the other substrate.
摘要:
An integrated circuit structure includes a first work piece and a second work piece. The first work piece includes a semiconductor substrate, and a copper bump over the semiconductor substrate. The second work piece includes a bond pad. A solder is between and adjoining the first work piece and the second work piece, wherein the solder electrically connects the copper bump to the bond pad. The solder includes palladium.
摘要:
An integrated circuit structure includes a semiconductor substrate; a conductive via (TSV) passing through the semiconductor substrate; and a copper-containing post overlying the semiconductor substrate and electrically connected to the conductive via.
摘要:
A thin wafer handling structure includes a semiconductor wafer, a release layer that can be released by applying energy, an adhesive layer that can be removed by a solvent, and a carrier, where the release layer is applied on the carrier by coating or laminating, the adhesive layer is applied on the semiconductor wafer by coating or laminating, and the semiconductor wafer and the carrier is bonded together with the release layer and the adhesive layer in between. The method includes applying a release layer on a carrier, applying an adhesive layer on a semiconductor wafer, bonding the carrier and the semiconductor wafer, releasing the carrier by applying energy on the release layer, e.g. UV or laser, and cleaning the semiconductor's surface by a solvent to remove any residue of the adhesive layer.
摘要:
Solder on slot connections in package on package structures. An apparatus includes a substrate having a front side surface and a back side surface; a first passivation layer disposed over at least one of the front side and back side surfaces; at least one via opening formed in the first passivation layer; a conductor layer disposed over the first passivation layer, coupled to the at least one via and forming a conductive trace on the surface of the first passivation layer; a second passivation layer formed over the conductor layer; and at least one slot opening formed in the second passivation layer and exposing a portion of the conductive trace for receiving a solder connector. In additional embodiments the substrate may be a semiconductor wafer. Methods for forming the structures are disclosed.
摘要:
A flip-chip packaging assembly and integrated circuit device are disclosed. An exemplary flip-chip packaging assembly includes a first substrate; a second substrate; and joint structures disposed between the first substrate and the second substrate. Each joint structure comprises an interconnect post between the first substrate and the second substrate and a joint solder between the interconnect post and the second substrate, wherein the interconnect post exhibits a width and a first height. A pitch defines a distance between each joint structure. The first height is less than half the pitch.
摘要:
An integrated circuit structure includes a semiconductor wafer, which includes a first notch extending from an edge of the semiconductor wafer into the semiconductor wafer. A carrier wafer is mounted onto the semiconductor wafer. The carrier wafer has a second notch overlapping at least a portion of the first notch. A side of the carrier wafer facing the semiconductor wafer forms a sharp angle with an edge of the carrier wafer. The carrier wafer has a resistivity lower than about 1×108 Ohm-cm.