Abstract:
A multilayered printed circuit board including a substrate, a multilayered structure built thereon and having conductor circuits and interlaminar resin insulating layers in an alternate fashion, and one or more stack-via structures including via-holes stacked one another and electrically connected to the conductor circuits through the insulating layers. Each of the via-holes includes a land portion formed on a respective one of the insulating layers and a filled via structure portion filling an opening of the respective one of the insulating layers with a metal layer such that the via-holes are stacked one another immediately above the filled via structure portion of each via-hole, the via-holes include the outermost layer via-hole in the outermost layer of the insulating layers, and one or more via-holes have the land portion having the land diameter which is larger than the land diameter of the land portion of the outermost layer via-hole.
Abstract:
Provided is a metal-resin composite provided with a layer consisting of a heat-resistant resin composition having a low permittivity or a low dielectric loss tangent. The composite can exhibit a low thermal expansion coefficient and a reduced transmission loss of an electric signal. The composite comprises a metal and a resin layer (I). The resin layer (I) is made from a resin composition prepared by blending (A) a heat-resistant resin that exhibits a relative permittivity of 2.3 or more at a frequency of 1 MHz with (B) polyolefin particles having a mean particle diameter of 100 [mu]m or less. The resin composition has both a continuous phase of the heat-resistant resin (A) and a dispersed phase of the polyolefin particles (B), with the relative permittivity of the resin composition being lower than that of the heat-resistant resin (A).
Abstract:
According to one mode of the present invention, metal-containing resin particles composed of a resin containing 50 wt % or more of a thermosetting resin and having a ratio of weight of absorbed moisture to weight of resin from 500 to 14500 ppm, and fine metal particles contained in said resin, is provided.
Abstract:
The adhesive composition of the invention contains (a) organic fine particles comprising at least one selected from the group consisting of alkyl (meth)acrylate ester-butadiene-styrene copolymer or complexes thereof, alkyl (meth)acrylate ester-silicone copolymer or complexes thereof and silicone-(meth)acrylic acid copolymer or complexes thereof.
Abstract:
An anisotropic conductive film that may give rise to high connection reliability, and a method for manufacturing a connection assembly with the use of the anisotropic conductive film, are disclosed. An anisotropic conductive film (2) is composes of an insulating adhesive resin containing polybutadiene particles, a cationic polymerizable resin and a cationic curing agent, and conductive particles dispersed in the insulating adhesive resin, with the lowest melt viscosity of the anisotropic conductive film being 300 to 1000 Pa·s. This anisotropic conductive film is placed in contact with terminal electrodes of a glass substrate (1). A flexible printed circuit board (3) is placed on top of the anisotropic conductive film so that terminal electrodes of the flexible printed circuit board (3) are in contact with the anisotropic conductive film (2). A heating tool is thrust onto the flexible printed circuit board side for electrically interconnecting the terminal electrodes.
Abstract:
An anisotropic conductive film includes a first thin film layer including concave portions, conductive balls arranged in the concave portions, insulating balls disposed on and between the conductive balls and each having a diameter smaller than the conductive balls, and a second thin film layer disposed covering the insulating balls. A display apparatus includes a pad part and a driving chip, which are electrically connected by the anisotropic conductive film.
Abstract:
The present invention aims to provide conductive particles which can reduce the stress while maintaining high hardness (hardly causing cracks even in a state of being crushed in connection process) by improving rolling properties and can ensure adequate conductive reliability not only with respect to ITO substrates, but also with respect to IZO substrates, an anisotropic conductive film provided with the conductive particles, a joined structure provided with the anisotropic conductive film, and a joining method using the anisotropic conductive film. The conductive particles of the present invention include polymer fine particles, and a conductive layer formed on surfaces of the polymer fine particles, wherein an outermost surface shell of the conductive layer is a nickel-palladium alloy layer.
Abstract:
This invention provides a wiring-terminal-connecting adhesive comprising a curing agent capable of generating a free radical upon heating, a radically polymerizable substance and silicone particles, and a wiring-terminal-connecting method and a wiring structure which make use of such an adhesive.
Abstract:
[Object]To provide a substrate processing method capable of forming a concavo-convex structure on a substrate surface while reducing the number of processes.[Solving Means] In a substrate processing method according to the present invention, particles are dispersed on a surface of a substrate, and a concavo-convex structure is formed on the surface of the substrate by etching the surface of the substrate with the particles as a mask and the mask is simultaneously removed by the etching. According to this method, a process of removing the mask from the substrate surface after the concavo-convex structure is formed becomes unnecessary. Accordingly, since the number of processes necessary to form the concavo-convex structure on the substrate surface is largely reduced, it becomes possible to greatly improve productivity.
Abstract:
A photosensitive insulating resin composition capable of forming an interlayer insulating film, or planarized film, or surface protective film, or insulating film for high-density mount substrate excelling in properties, such as resolution, adherence, thermal impact, electrical insulation, patterning performance and elongation; a hardening product thereof; and a circuit board equipped with the hardening product. There is provided a positive photosensitive insulating resin composition comprising an alkali-soluble resin; a compound having a quinonediazido group; and crosslinked resin particles of a particulate copolymer whose 20 to 90 mol % constituent is derived from a hydroxylated and/or carboxylated monomer.