Abstract:
A method for producing aligned passages through substrate materials, in which the projection of the inlet and outlet openings does not coincide, uses displaced application of etching windows on opposite sides and corresponding pronounced under-etching of these windows. By applying displaced etching windows on both sides of the substrate and through-etching the substrate through these windows, `oblique` passages are obtained through the substrate. By a suitable location of the windows it is also possible to produce branched passages with more than one outlet opening.
Abstract:
A multilayer wiring board and a method for manufacturing the same are disclosed. The wiring board comprises an insulating substrate having a first and second conductor layers formed on major surfaces of the insulating substrate, a blind hole formed through the first conductor layer and the insulating substrate to expose the second conductor layer at the bottom of the blind hole, and a connecting conductor provided to cover the exposed surface of the second conductor layer wall portion of the blind hole and the first conductor layer. Since the connecting conductor and the second conductor are made in surface contact, connection reliability is very much improved. The blind hole is made by blasting a fine abrasive powder beam to selectively remove the insulating substrate. The end of selective removal can be easily controlled by the difference of working speed against the insulating substrate and the conductor layer to successfully expose the second conductor layer at the bottom of the blind hole.
Abstract:
A multilayer interconnection substrate having, e.g., first to third power interconnections provided with first to third interconnection layers. A first insulating layer is provided between the first and second interconnection layers, and a second insulating layer is provided between the second and third interconnection layers. A plurality of first via holes are provided at said first insulating layer and connect the first and second power interconnections and a plurality of second via holes are provided at said second insulating layer with their position being shifted from that of the first via holes and connect the second and third power interconnection.
Abstract:
A pressure-type contact for flexible or conventional wire cable terminations is fabricated from electroformed thin metallic wafers (100) in which one wafer is plated with a raised conductive interconnection feature (122). The electrical circuitry (118, 120) is made on a stainless steel mandrel (10, 10a) having a TEFLON pattern (16, 16a) on its surface that allows the desired electrical circuit (30, 32, 34, 30a, 32a, 34a, 78) to be electrolytically plated upon the conductive mandrel surface. The mandrel surface is formed with projecting features in the form of depressions (24, 24a) that will form a series of dots or raised interconnection features on the termination wafers. The mandrel also has projecting posts (76) for providing electrical connection through the substrate.
Abstract:
A unique process metallizes a substrate surface using a reducing agent including a borohydride to reduce, in a starved reaction, metal oxide particles (300) substantially uniformly distributed and at a controlled concentration in a particle-filled resin (204) to produce catalytic island areas (301). The catalytic island areas (301) formed have a surface resistivity greater than 10.sup.6 ohms per square. These catalytic island areas (301) are then electrolessly metallized to a predetermined thickness, such that adjacent catalytic island areas (301) are interconnected and form metallic features, such as pads, vias (213), and conductors (210, 211 and 212). The starved reaction limits the reduction of metal oxide particles (300) to catalytic island areas (301) and prevents migration of reduced metal beyond each of the exposed surfaces of particle-filled resin (204) which are to be metallized.
Abstract:
An interconnect device for electronic components, such as integrated circuits, multichip modules and the like, and the method of manufacture thereof are presented. The interconnect device has at least three layers of circuitry, one for signal transmission and two for voltage planes (power and ground). The interconnect device is made by a processing on a stainless steel carrier plate to achieve high lead count capability with fine line widths and spacing, as well as precise registration layer to layer. Laser drilling is used to define interconnect vias between signal and voltage (power and ground) plane layers.
Abstract:
An interconnect device for electronic components, such as integrated circuits, multichip modules and the like, and the method of manufacture of such components are presented. The interconnect device has two layers of circuitry, one for signal transmission and one for voltage plane. The interconnect device is made by a processing on a stainless steel carrier plate to achieve high lead count capability with fine line widths and spacing, as well as precise registration layer to layer. Laser drilling is used to define interconnect vias between signal and voltage (power or ground) plane layers.
Abstract:
A package for surface-mounted components according to the present invention includes a first board which includes contact portions formed on a front face side thereof for mounting the components to be surface-mounted thereon, and first through-holes electrically contiguous with the contact portions; a second board includes conductor pins provided on a rear face side thereof for establishing continuity with another board and second through-holes electrically contiguous with the conductor pins; and a conductor layer interposed between the first and second boards by which the first through-holes in the first board side and the second through-holes in the second board side are mutually electrically connected.
Abstract:
A printed circuit comprising a substrate, a first conductive circuit pattern thereon and an insulator on the first conductive circuit pattern. The insulator has a via hole which extends down to and is tapered toward the first conductive circuit pattern. A second conductive circuit pattern is formed on the side wall of the via hole and on a portion of the first conductive circuit pattern. The tapered via hole allows the second conductive circuit pattern to ensure excellent electrical contact with the first conductive circuit pattern.
Abstract:
According to the invention, blind holes (27) and not through-holes are produced. For this purpose, the substrate (10) to be pierced or perforated is previously covered with a layer (12) less absorbing for the laser perforating beam (26) than the substrate.Application to the production of electronic circuits, magnetic recording devices, etc.