摘要:
A HEMT made of nitride semiconductor materials and a process of forming the same are disclosed, where the HEMT has n-type regions beneath the source and drain electrodes with remarkably increased carrier concentration. The HEMT provides the n-type regions made of at least one of epitaxially grown ZnO layer and MgZnO layer each doped with at least aluminum and gallium with density higher than 1×1020 cm−3. The process of forming the HEMT includes steps of forming recesses by dry-etching, epitaxially growing n-type layer, removing surplus n-type layer except within the recesses by dry-etching using hydrocarbon, and forming the electrodes on the n-type layer.
摘要:
To form an oxide semiconductor film with a low density of localized levels. To improve electric characteristics of a semiconductor device including the oxide semiconductor. After oxygen is added to an oxide film containing In or Ga in contact with an oxide semiconductor film functioning as a channel, heat treatment is performed to make oxygen in the oxide film containing In or Ga transfer to the oxide semiconductor film functioning as a channel, so that the amount of oxygen vacancies in the oxide semiconductor film is reduced. Further, an oxide film containing In or Ga is formed, oxygen is added to the oxide film, an oxide semiconductor film is formed over the oxide film, and then heat treatment is performed.
摘要:
A method of manufacturing a semiconductor substrate may include forming a first semiconductor layer on a growth substrate, forming a second semiconductor layer on the first semiconductor layer, forming a plurality of voids in the first semiconductor layer by removing portions of the first semiconductor layer that are exposed by a plurality of trenches in the second semiconductor layer, forming a third semiconductor layer on the second semiconductor layer and covering the plurality of trenches, and separating the second and third semiconductor layers from the growth substrate. on the first semiconductor layer. The third semiconductor layer are grown from the second semiconductor layer and extend above the second semiconductor layer.
摘要:
III-nitride materials are generally described herein, including material structures comprising III-nitride material regions and silicon-containing substrates. Certain embodiments are related to gallium nitride materials and material structures comprising gallium nitride material regions and silicon-containing substrates.
摘要:
FinFET devices including III-V fin structures and silicon-based source/drain regions are formed on a semiconductor substrate. Silicon is diffused into the III-V fin structures to form n-type junctions. Leakage through the substrate is addressed by forming p-n junctions adjoining the source/drain regions and isolating the III-V fin structures under the channel regions.
摘要:
A nitride semiconductor device of the present invention has a source-electrode-side insulator protection film layer disposed between a source electrode and a drain electrode on a second nitride semiconductor layer and formed at least partially covering the source electrode, a drain-electrode-side insulator protection film layer disposed separately from the source-electrode-side insulator protection film layer and formed at least partially covering the drain electrode, and a gate layer formed in contact with the second nitride semiconductor layer between the source-electrode-side insulator protection film layer and the drain-electrode-side insulator protection film layer and made of a p-type metal oxide semiconductor, and the gate layer has regions opposite to the second nitride semiconductor layer across each of the source-electrode-side insulator protection film layer and the drain-electrode-side insulator protection film layer and a region in contact with the second nitride semiconductor layer.
摘要:
A semiconductor device includes a substrate, a first nitride semiconductor layer on the substrate, a second nitride semiconductor layer on the first nitride semiconductor layer, a third nitride semiconductor layer on the second nitride semiconductor layer, an electrode on the third nitride semiconductor layer, and an insulating layer under the electrode and between the first nitride semiconductor layer and the second nitride semiconductor layer.
摘要:
In one example, a method for fabricating a semiconductor device includes forming a mandrel comprising silicon. Sidewalls of the silicon are orientated normal to the direction of the silicon. A nanowire is grown directly on at least one of the sidewalls of the silicon and is formed from a material selected from Groups III-V. Only one end of the nanowire directly contacts the silicon.
摘要:
An insulating substrate to which intermediate portions or conductive pastes constituting the intermediate portions are disposed, a front surface protective member to which front surface patterns are formed, and a back surface protective member to which back surface patterns are formed are prepared. A laminated body, to which first end portions or conductive pastes constituting the first end portions are disposed between the intermediate portions or the conductive pastes constituting the intermediate portions and the front surface patterns, and second end portions or conductive pastes constituting the second end portions are disposed between the intermediate portions or the conductive pastes constituting the intermediate portions and the back surface patterns, is constituted. Then, thermoelectric conversion elements are formed by integrating the laminated body.
摘要:
The present disclosure presents a novel structure for a dielectric material for use with Group III-V material systems and a method of fabricating such a structure. More specifically, the present disclosure describes a novel dielectric layer that is formed on the top surface of a III-V material where the dielectric layer comprises a first region in contact with the top surface of the III-V material crystalline and a second region adjacent to the first region and at the upper side of the dielectric layer. The dielectric layer has material properties different from traditional dielectric layers as it is composed of both crystalline and amorphous structures. The crystalline structure is at the interface with the III-V material (such as AlGaN or GaN) but gradually transitions into an amorphous structure, both within the same layer and both comprising the same material.