Abstract:
Systems and methods of testing integrated circuits are disclosed. A system may include a data compression component to compress data received from an integrated circuit under test at a first clock frequency, to generate compressed data. The system may also include a data output component, operatively coupled to the data compression component, to convey the compressed data to automated testing equipment at a second clock frequency.
Abstract:
A packaged semiconductor device includes a data pin, a first memory die, and a second memory die stacked with the first memory die. The first memory die includes a first data interface coupled to the data pin and a first memory core having a plurality of banks. The second memory die includes a second memory core having a plurality of banks. A respective bank of the first memory core and a respective bank of the second memory core perform parallel row access operations in response to a first command signal and parallel column access operations in response to a second command signal. The first data interface of the first die provides aggregated data from the parallel column access operations in the first and second die to the data pin.
Abstract:
A memory controller component of a memory system stores memory access requests within a transaction queue until serviced so that, over time, the transaction queue alternates between occupied and empty states. The memory controller transitions the memory system to a low power mode in response to detecting the transaction queue is has remained in the empty state for a predetermined time. In the transition to the low power mode, the memory controller disables oscillation of one or more timing signals required to time data signaling operations within synchronous communication circuits of one or more attached memory devices and also disables one or more power consuming circuits within the synchronous communication circuits of the one or more memory devices.
Abstract:
A method includes providing a data processor having an instruction pipeline, where the instruction pipeline has a plurality of instruction pipeline stages, and where the plurality of instruction pipeline stages includes a first instruction pipeline stage and a second instruction pipeline stage. The method further includes providing a data processor instruction that causes the data processor to perform a first set of computational operations during execution of the data processor instruction, performing the first set of computational operations in the first instruction pipeline stage if the data processor instruction is being executed and a first mode has been selected, and performing the first set of computational operations in the second instruction pipeline stage if the data processor instruction is being executed and a second mode has been selected.
Abstract:
In a non-volatile memory device having an array of non-volatile storage elements, command, address and data signals are received at respective times via a time-multiplexed external signaling line, the data signals representing data to be stored within the array of non-volatile storage elements. A control signal is received via a signaling path external to the non-volatile memory device, and an on-die termination element is switchably coupled to the time-multiplexed signaling line at least in part in response to a transition of the control signal from a first logic state to a second logic state.
Abstract:
A device includes a first interface to receive a signal from a first communication link, wherein the receive signal includes out-of-band (OOB) information. A detector coupled to the first interface detects the OOB information. An encoder coupled to the detector encodes the OOB information into one or more symbols (e.g., control characters). A second interface is coupled to the encoder and a second communication link (e.g., a serial transport path). The second interface transmits the symbols on the second communication link. The device also includes mechanisms for preventing false presence detection of terminating devices.
Abstract:
A multi-phase partial response equalizer circuit includes sampler circuits that sample an input signal to generate sampled signals in response to sampling clock signals having different phases. A first multiplexer circuit selects one of the sampled signals as a first sampled bit to represent the input signal. A first storage circuit coupled to an output of the first multiplexer circuit stores the first sampled bit in response to a first clock signal. A second multiplexer circuit selects one of the sampled signals as a second sampled bit to represent the input signal based on the first sampled bit. A second storage circuit stores a sampled bit selected from the sampled signals in response to a second clock signal. A time period between the second storage circuit storing a sampled bit and the first storage circuit storing the first sampled bit is substantially greater than a unit interval in the input signal.
Abstract:
A memory system includes a link having at least one signal line and a controller. The controller includes at least one transmitter coupled to the link to transmit first data, and a first error protection generator coupled to the transmitter. The first error protection generator dynamically adds an error detection code to at least a portion of the first data. At least one receiver is coupled to the link to receive second data. A first error detection logic determines if the second data received by the controller contains at least one error and, if an error is detected, asserts a first error condition. The system includes a memory device having at least one memory device transmitter coupled to the link to transmit the second data. A second error protection generator coupled to the memory device transmitter dynamically adds an error detection code to at least a portion of the second data.
Abstract:
An integrated circuit includes a physical layer interface having a control timing domain and a data timing domain, and circuits that enable the control timing domain during a change in power conservation mode in response to a first event, and that enable the data timing domain in response to a second event. The control timing domain can include interface circuits coupled to a command and address path, and the data timing domain can include interface circuits coupled to a data path.
Abstract:
Described are methods and circuits for margin testing digital receivers. These methods and circuits prevent margins from collapsing in response to erroneously received data, and can thus be used in receivers that employ historical data to reduce intersymbol interference (ISI). Some embodiments detect receive errors for input data streams of unknown patterns, and can thus be used for in-system margin testing. Such systems can be adapted to dynamically alter system parameters during device operation to maintain adequate margins despite fluctuations in the system noise environment due to e.g. temperature and supply-voltage changes. Also described are methods of plotting and interpreting filtered and unfiltered error data generated by the disclosed methods and circuits. Some embodiments filter error data to facilitate pattern-specific margin testing.