Abstract:
An integrated circuit package system that includes: providing a substrate with a protective coating; attaching a labeling film to a support member in a separate process; joining the protective coating and the labeling film; and dicing the substrate, the protective coating, and the labeling film to form the integrated circuit package system.
Abstract:
A semiconductor device has a first semiconductor die and a first encapsulant deposited over the first semiconductor die. An interconnect structure is formed over the first semiconductor die and first encapsulant. A modular interconnect structure including a conductive via is disposed adjacent to the first semiconductor die. The first encapsulant is deposited over the modular interconnect structure. An opening is formed in the first encapsulant extending to the modular interconnect structure or to the interconnect structure. A second semiconductor die is disposed over the first semiconductor die. A bond wire is formed over the second semiconductor die and extends into the opening in the first encapsulant. A cap is formed over an active region of the second semiconductor die. A second encapsulant is deposited over the second semiconductor die and bond wire. Alternatively, a lid is formed over the second semiconductor die and bond wire.
Abstract:
A method of manufacture of an integrated circuit packaging system comprising: providing a package carrier; mounting an integrated circuit to the package carrier; and forming a perimeter antiwarpage structure on and along a perimeter of the package carrier.
Abstract:
A semiconductor device has a substrate with a plurality of conductive vias and conductive layer formed over the substrate. A semiconductor die is mounted over a carrier. The substrate is mounted to the semiconductor die opposite the carrier. An encapsulant is deposited between the substrate and carrier around the semiconductor die. A plurality of conductive TMVs is formed through the substrate and encapsulant. The conductive TMVs protrude from the encapsulant to aid with alignment of the interconnect structure. The conductive TMVs are electrically connected to the conductive layer and conductive vias. The carrier is removed and an interconnect structure is formed over a surface of the encapsulant and semiconductor die opposite the substrate. The interconnect structure is electrically connected to the conductive TMVs. A plurality of semiconductor devices can be stacked and electrically connected through the substrate, conductive TMVs, and interconnect structure.
Abstract:
A method of manufacturing a semiconductor device includes providing a wafer for supporting the semiconductor device. An insulation layer is disposed over a top surface of the wafer. The method includes forming a first interconnect structure over the top surface of the wafer with temperatures in excess of 200° C., forming a metal pillar over the wafer in electrical contact with the first interconnect structure, connecting a semiconductor component to the first interconnect structure, and forming encapsulant over the semiconductor component. The encapsulant is etched to expose a portion of the metal pillar. A buffer layer is optionally formed over the encapsulant. The method includes forming a second interconnect structure over the encapsulant in electrical contact with the metal pillar with temperatures below 200° C., and removing a portion of a backside of the wafer opposite the top surface of the wafer.
Abstract:
An integrated circuit package system includes: forming an array of external interconnects with an intersecting region between the external interconnects; removing the intersecting region for forming an isolation hole between the external interconnects; mounting an integrated circuit die over the external interconnects; connecting an internal interconnect between the integrated circuit die and the external interconnects; and forming a package encapsulation over the integrated circuit die with the external interconnects partially exposed.
Abstract:
A semiconductor device has a semiconductor die with a plurality of bumps formed over a surface of the semiconductor die. A first conductive layer having first and second segments is formed over a surface of the substrate with a first vent separating an end of the first segment and the second segment and a second vent separating an end of the second segment and the first segment. A second conductive layer is formed over the surface of the substrate to electrically connect the first segment and second segment. The thickness of the second conductive layer can be less than a thickness of the first conductive layer to form the first vent and second vent. The semiconductor die is mounted to the substrate with the bumps aligned to the first segment and second segment. Bump material from reflow of the bumps is channeled into the first vent and second vent.
Abstract:
A semiconductor device has a semiconductor die mounted over the carrier. An encapsulant is deposited over the carrier and semiconductor die. The carrier is removed. A first interconnect structure is formed over the encapsulant and a first surface of the die. A second interconnect structure is formed over the encapsulant and a second surface of the die. A first protective layer is formed over the first interconnect structure and second protective layer is formed over the second interconnect structure prior to forming the vias. A plurality of vias is formed through the second interconnect structure, encapsulant, and first interconnect structure. A first conductive layer is formed in the vias to electrically connect the first interconnect structure and second interconnect structure. An insulating layer is formed over the first interconnect structure and second interconnect structure and into the vias. A discrete semiconductor component can be mounted to the first interconnect structure.
Abstract:
A semiconductor device is made by forming first and second interconnect structures over a first semiconductor die. A third interconnect structure is formed in proximity to the first die. A second semiconductor die is mounted over the second and third interconnect structures. An encapsulant is deposited over the first and second die and first, second, and third interconnect structures. A backside of the second die is substantially coplanar with the first interconnect structure and a backside of the first semiconductor die is substantially coplanar with the third interconnect structure. The first interconnect structure has a height which is substantially the same as a combination of a height of the second interconnect structure and a thickness of the second die. The third interconnect structure has a height which is substantially the same as a combination of a height of the second interconnect structure and a thickness of the first die.
Abstract:
An integrated circuit package system includes an in-line strip, attaching an integrated circuit die over the in-line strip, and applying a molding material with a molded segment having a molded strip protrusion formed therefrom over the in-line strip.