Abstract:
Through-Silicon-Via (TSV) structures can include a conductive via through a substrate extending from an upper surface of the substrate to a backside surface of the substrate opposite the upper surface, a conductive protective layer including Ni and/or Co can be at a bottom of the conductive via, and a separate polymer insulating layer can be on the backside surface of the substrate in contact with the conductive protective layer.
Abstract:
A semiconductor package and a method of manufacturing the semiconductor package. The semiconductor package include a substrate including a plurality of pads and a plurality of bumps evenly disposed on an entire region of the substrate regardless of an arrangement of the plurality of pads. According to the present invention, a simplification of a process can be accomplished, a cost of a process can be reduced, reliability can be improved and an under-filling can become easy.
Abstract:
A semiconductor package includes upper and lower semiconductor chip packages, and a redistribution wiring layer pattern interposed between the packages. The lower package includes a molding layer in which at least one chip is embedded, and has a top surface and an inclined sidewall surface along which the redistribution wiring layer pattern is formed. The upper and lower packages are electrically connected to through the redistribution wiring layer pattern. A first package may be formed by a wafer level packaging technique and may include a redistribution wiring layer as a substrate, a semiconductor chip disposed on the redistribution wiring layer, and a molding layer on which the lower package, redistribution wiring layer pattern and upper package are disposed.
Abstract:
An embodiment includes a semiconductor package comprising: a substrate; a first semiconductor chip mounted on the substrate; a second semiconductor chip mounted on a top surface of the first semiconductor chip; a connecting bump disposed between the first and second semiconductor chips to electrically connect the second semiconductor chip to the first semiconductor chip; and a first heat dissipation part disposed on the top surface of the first semiconductor chip between the first and second semiconductor chips and spaced apart from a bottom surface of the second semiconductor chip.
Abstract:
An embodiment includes a semiconductor package comprising: a substrate; a first semiconductor chip mounted on the substrate; a second semiconductor chip mounted on a top surface of the first semiconductor chip; a connecting bump disposed between the first and second semiconductor chips to electrically connect the second semiconductor chip to the first semiconductor chip; and a first heat dissipation part disposed on the top surface of the first semiconductor chip between the first and second semiconductor chips and spaced apart from a bottom surface of the second semiconductor chip.
Abstract:
A semiconductor package includes upper and lower semiconductor chip packages, and a redistribution wiring layer pattern interposed between the packages. The lower package includes a molding layer in which at least one chip is embedded, and has a top surface and an inclined sidewall surface along which the redistribution wiring layer pattern is formed. The upper and lower packages are electrically connected to through the redistribution wiring layer pattern. A first package may be formed by a wafer level packaging technique and may include a redistribution wiring layer as a substrate, a semiconductor chip disposed on the redistribution wiring layer, and a molding layer on which the lower package, redistribution wiring layer pattern and upper package are disposed.
Abstract:
A semiconductor package and a method of manufacturing the semiconductor package. The semiconductor package include a substrate including a plurality of pads and a plurality of bumps evenly disposed on an entire region of the substrate regardless of an arrangement of the plurality of pads. According to the present invention, a simplification of a process can be accomplished, a cost of a process can be reduced, reliability can be improved and an under-filling can become easy.
Abstract:
A semiconductor package is provided. At least one semiconductor chip is mounted on a package substrate. A mold layer covers the at least one semiconductor chip. The mold layer exposes a portion of a top surface of an uppermost semiconductor chip of the at least one semiconductor chip.
Abstract:
A semiconductor device having through-electrodes and methods for fabricating the same are provided. The semiconductor device may include a first semiconductor chip including a first active surface on which a first top pad is provided; a second semiconductor chip including a second active surface on which a second top pad is provided and a second inactive surface on which a second bottom pad is provided, the second semiconductor chip being stacked on the first semiconductor chip with the second active surface facing the first active surface; and a conductive interconnection configured to electrically connect the chips. The conductive interconnection includes a first through-electrode that penetrates the second semiconductor chip and electrically connects the second bottom pad to the second top pad; and a second through-electrode that passes through the second top pad without contacting the second top pad, and electrically connects the second bottom pad to the first top pad.
Abstract:
Through-Silicon-Via (TSV) structures can be provided by forming a conductive via through a substrate extending from an upper surface of the substrate to a backside surface of the substrate, that is opposite the upper surface, and having a conductive protective layer comprising Ni and/or Co formed at a bottom of the conductive via. A polymer insulating layer can be formed on the backside surface that is separate from the substrate and in contact with the conductive protective layer.