Abstract:
Provided is an inkjet adhesive which is applied using an inkjet device, wherein the adhesive can suppress generation of voids in the adhesive layer and, after bonding, can reduce an outgas at the time of being exposed to high temperatures, and can enhance moisture-resistant reliability. An inkjet adhesive according to the present invention comprises a first photocurable compound having one (meth)acrylol group, a second photocurable compound having two or more (meth)acrylol groups, a photo-radical initiator, a thermosetting compound having one or more cyclic ether groups or cyclic thioether groups, and a compound capable of reacting with the thermosetting compound, and the first photocurable compound contains alkyl (meth)acrylate having 8 to 21 carbon atoms.
Abstract:
A heat resistant adhesive sheet is provided that does not easily develop deformation of an adhesive sheet due to heating. Such an adhesive sheet made by laminating an adhesive layer to a substrate is provided, characterized in that the substrate is heat shrinkable and the adhesive layer contains a (meth)acrylate copolymer, a photopolymerizable compound, a polyfunctional isocyanate curing agent, and a photopolymerization initiator and does not substantially contain a tackifying resin. This adhesive sheet is not deformed even when heated. Since the adhesive does not substantially contain a tackifying resin, softening of the adhesive layer does not occur even when the sheet is heated.
Abstract:
This invention relates to a method for bonding of a first contact area of a first at least largely transparent substrate to a second contact area of a second at least largely transparent substrate, on at least one of the contact areas an oxide being used for bonding, from which an at least largely transparent interconnection layer is formed with an electrical conductivity of at least 10e1 S/cm2 (measurement: four point method, relative to temperature of 300K) and an optical transmittance greater than 0.8 (for a wavelength range from 400 nm to 1500 nm) on the first and second contact area.
Abstract:
A heat resistant adhesive sheet is provided that does not easily develop deformation of an adhesive sheet due to heating. Such an adhesive sheet made by laminating an adhesive layer to a substrate is provided, characterized in that the substrate is heat shrinkable and the adhesive layer contains a (meth)acrylate copolymer, a photopolymerizable compound, a polyfunctional isocyanate curing agent, and a photopolymerization initiator and does not substantially contain a tackifying resin. This adhesive sheet is not deformed even when heated. Since the adhesive does not substantially contain a tackifying resin, softening of the adhesive layer does not occur even when the sheet is heated.
Abstract:
A method for producing a material-bonding connection between a semiconductor chip and a metal layer is disclosed. For this purpose, a semiconductor chip, a metal layer, which has a chip mounting portion, and also a bonding medium containing a metal powder are provided. The metal powder is sintered in a sintering process. In this case, throughout a prescribed sintering time, the prescribed requirements are met, that the bonding medium is arranged between the semiconductor chip and the metal layer and extends right through from the semiconductor chip to the metal layer, that the semiconductor chip and the metal layer are pressed against one another in a pressing-pressure range that lies above a minimum pressing pressure, that the bonding medium is kept in a temperature range that lies above a minimum temperature and that a sound signal is introduced into the bonding medium.
Abstract:
Embodiments of the present invention provide for the enhancement of transistors in a semiconductor structure using a strain layer. The structure comprises a patterned layer consisting of an excavated region and a pattern region, a strain layer located in the excavated region and on the pattern region, an active layer located above the strain layer, a field effect transistor formed in the active layer, and a handle layer located above the active layer. The field effect transistor comprises a source, a drain, and a channel. The channel lies completely within a lateral extent of the pattern region. The source and the drain each lie only partially within the lateral extent of the pattern region. The strain layer alters a carrier mobility of the channel. In some embodiments, the strain layer is introduced to the back side of a semiconductor-on-insulator structure.
Abstract:
A method for producing a material-bonding connection between a semiconductor chip and a metal layer is disclosed. For this purpose, a semiconductor chip, a metal layer, which has a chip mounting portion, and also a bonding medium containing a metal powder are provided. The metal powder is sintered in a sintering process. In this case, throughout a prescribed sintering time, the prescribed requirements are met, that the bonding medium is arranged between the semiconductor chip and the metal layer and extends right through from the semiconductor chip to the metal layer, that the semiconductor chip and the metal layer are pressed against one another in a pressing-pressure range that lies above a minimum pressing pressure, that the bonding medium is kept in a temperature range that lies above a minimum temperature and that a sound signal is introduced into the bonding medium.
Abstract:
An emission enhancement structure having at least one energy augmentation structure; and an energy converter capable of receiving energy from an energy source, converting the energy and emitting therefrom a light of a different energy than the received energy. The energy converter is disposed in a vicinity of the at least one energy augmentation structure such that the emitted light is emitted with an intensity larger than if the converter were remote from the at least one energy augmentation structure. Also described are various uses for the energy emitters, energy augmentation structures and energy collectors in a wide array of fields, including various adhesives applications.
Abstract:
An emission enhancement structure having at least one energy augmentation structure; and an energy converter capable of receiving energy from an energy source, converting the energy and emitting therefrom a light of a different energy than the received energy. The energy converter is disposed in a vicinity of the at least one energy augmentation structure such that the emitted light is emitted with an intensity larger than if the converter were remote from the at least one energy augmentation structure. Also described are various uses for the energy emitters, energy augmentation structures and energy collectors in a wide array of fields, such as color enhancement, and color enhancement structures containing the same.
Abstract:
A method for manufacturing a display panel includes providing a backplate, forming bonding parts on backplate, forming an auxiliary layer on backplate, releasing light-emitting elements onto the auxiliary layer such that electrodes of the light-emitting elements are in contact with the first parts to form an intermediate backplate, arranging the intermediate backplate under first predetermined condition under which a fluidity of the first part is greater than that of the second part, and bonding the electrodes and the bonding parts to form an eutectic bonding layer, and arranging the intermediate backplate under second predetermined condition such that the first and second parts form solid-state first and second members. The backplate includes first and second regions. The bonding parts are located in the first regions. The auxiliary layer covers the backplate and the bonding parts. The auxiliary layer includes first and second parts respectively located in the first and second regions.