Abstract:
A method and apparatus for detecting an arc condition in a semiconductor test system is disclosed. While probes in a semiconductor test system are being moved into or out of contact with a semiconductor wafer, the voltage level of power supplied to selected ones of the probes is monitored. If the voltage level of the power exceeds a level that could cause an arc between the probes and the semiconductor wafer while the wafer is being moved, an indication is generated that an arc condition has been detected.
Abstract:
A method for heat-treating a plurality of microelectronic structures attached to a non-metallic substrate is disclosed. Each of the plurality of microelectronic structures is comprised of a metallic material, and ones of the plurality of metallic microelectronic structures are insulated from other ones of the plurality of microelectronic structures. An application of the method is for heat-treatment of resilient microstructures. The method comprises the steps of: (a) placing the non-metallic substrate and the plurality of microelectronic structures in an oscillating electromagnetic field, whereby the plurality of microelectronic structures are heated by the oscillating electromagnetic field and the non-metallic substrate is essentially not heated by the oscillating electromagnetic field; (b) maintaining the non-metallic substrate and the plurality of microelectronic structures in the oscillating electromagnetic field until each of the plurality of microelectronic structures obtains a defined heat-treatment temperature substantially greater than an ambient temperature; (c) removing the non-metallic substrate and the plurality of microelectronic structures from the oscillating electromagnetic field; and (d) cooling the plurality of microelectronic structures to the ambient temperature.
Abstract:
Temporary connections to spring contact elements extending from an electronic component such as a semiconductor device are made by urging the electronic component, consequently the ends of the spring contact elements, vertically against terminals of an interconnection substrate, or by horizontally urging terminals of an interconnection substrate against end portions of the spring contact elements. A variety of terminal configurations are disclosed.
Abstract:
Traces routed through a computer depiction of a routing area of an electronics system comprise a plurality of connected nodes. Forces are assigned to the nodes, and the nodes are moved in accordance with the forces. The forces may be based on such things as the proximity of the nodes to each other and to obstacles in the routing area. This tends to smooth, straighten and/or shorten the traces, and may also tend to correct design rule violations.
Abstract:
An interposer includes a substrate having opposing surfaces. Conductive terminals are disposed on both surfaces, and conductive terminals on one surface are electrically connected to conductive terminals on the opposing surface. Elongate, springable, conducive interconnect elements are fixed to conductive terminals on both surfaces.
Abstract:
Described herein is a probe card assembly providing signal paths for conveying high frequency signals between bond pads of an integrated circuit (IC) and an IC tester. The frequency response of the probe card assembly is optimized by appropriately distributing, adjusting and impedance matching resistive, capacitive and inductive impedance values along the signal paths so that the interconnect system behaves as an appropriately tuned Butterworth or Chebyshev filter.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate. The spring contact elements are suitably mounted by their base end portions to corresponding terminals on an electronic component, such as a space transformer or a semiconductor device, whereupon the sacrificial substrate is removed so that the contact ends of the spring contact elements extend above the surface of the electronic component. In an exemplary use, the spring contact elements are thereby disposed on a space transformer component of a probe card assembly so that their contact ends effect pressure connections to corresponding terminals on another electronic component, for the purpose of probing the electronic component.
Abstract:
Probe systems and methods of operating probe systems. The probe systems include a chuck that defines a support surface. The probe systems also include a cover plate. The probe systems further include a probe positioner that includes a positioner base, a manipulator that extends from the positioner base, and a probe arm that extends from the manipulator. The probe systems also include a probe operatively attached to the probe arm and a positioner attachment structure that separably attaches the positioner base to the cover plate. The positioner attachment structure includes an attachment structure body that defines a positioner base-facing side and a cover plate-facing side. The positioner attachment structure also includes an adhesive material that adheres the positioner base-facing side to the positioner base. The cover plate-facing side of the attachment structure body defines a micropatterned dry adhesive that separably attaches the attachment structure body to the cover plate.
Abstract:
A roller mechanism with controlled height is used for probe tap-down in arrays of vertical probes for device testing. The height can be controlled using features of the roller, or external shims. This approach overcomes issues related to guide plate flexure during plate tap down by reducing forces on guide plates. It also avoids issues of probe damage from manual tap down.
Abstract:
Improved performance for attenuated testing when probing a device under test with a probe array is provided. By moving the attenuation components from their conventional location on the printed circuit board of the probe head to the space transformer of the probe head, electrical path lengths can be decreased, thereby improving performance. This is particularly helpful in connection with loopback testing.