摘要:
There is provided a novel Cu bonding wire that achieves a favorable FAB shape and achieve a favorable bond reliability of the 2nd bonding part even in a rigorous high-temperature environment. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic% or more formed on a surface of the core material. The bonding wire is characterized in that:
in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.0 or less where X is defined as an average value of a ratio of a Pd concentration CPd (atomic%) to an Ni concentration CNi (atomic%), CPd/CNi, for all measurement points in the coating layer, the total number of measurement points in the coating layer whose absolute deviation from the average value X is 0.3X or less is 50% or more relative to the total number of measurement points in the coating layer, and the bonding wire satisfies at least one of following conditions (i) and (ii):
(i) a concentration of In relative to the entire wire is 1 ppm by mass or more and 100 ppm by mass or less; and (ii) a concentration of Ag relative to the entire wire is 1 ppm by mass or more and 500 ppm by mass or less.
摘要:
An electronic assembly comprising an electronic substrate and a plurality of conductive interconnection elements. The substrate has a first side having a plurality of terminals. Each interconnection element has a base secured to a respective one of the terminals, a contact region distant from the electronic substrate, and an elongate freestanding section which can bend when pressure is applied to the contact region.
摘要:
An electronic assembly. The electronic assembly includes a first substrate which has a first set of contact pads and a second substrate which has a second set of contact pads. A plurality of elongate, springable interconnection elements are located between the first substrate and the second substrate. Each of the plurality of elongate, springable interconnect elements is free standing and has a portion permanently attached to a respective contact pad of the first set of contact pads and has a second portion contacting a respective contact pad of the second set of contact pads. The first and the second substrates are brought into a fixed relationship relative to one another.
摘要:
Contact structures are formed by building a core structure on a substrate and over coating the core structure with a material that is harder or has a greater yield strength than the material of the core structure. The core structure may be formed by attaching a wire to the substrate and spooling the wire out from a spool. While spooling the wire out, the spool may be moved to impart a desired shape to the wire. The wire is severed from the spool and over coated. As an alternative, the wire is not over coated. The substrate may be an electronic device, such as a semiconductor die.
摘要:
Contact structures are formed by building a core structure on a substrate and over coating the core structure with a material that is harder or has a greater yield strength than the material of the core structure. The core structure may be formed by attaching a wire to the substrate and spooling the wire out from a spool. While spooling the wire out, the spool may be moved to impart a desired shape to the wire. The wire is severed from the spool and over coated. As an alternative, the wire is not over coated. The substrate may be an electronic device, such as a semiconductor die.
摘要:
Spring contact elements are attached to terminals of an electronic component, which may be a semiconductor die. The spring contact elements may comprise a flexible precursor element. The precursor element may be over coated with a resilient material. The spring contact elements may be elongate and attached to the terminals at one end. The other end of the spring contacts may be spaced away from the electronic component.
摘要:
In order to provide an electronic component of a high frequency current suppression type, which can completely suppress a high frequency current to prevent an electromagnetic interference from occurring even when it is used at a high frequency, and a bonding wire for the same, the semiconductor integrated circuit device (IC) (17) operates at a high speed in using at a high frequency band, and a predetermined number of terminals (19) are provided with a high frequency current suppressor (21) for attenuating a high frequency current passing through the terminals themselves. This high frequency current suppressor (21) is a thin film magnetic substance having a range from 0.3 to 20 (nullm) in thickness, and is disposed on the entire surface of each terminal (19), covering a mounting portion to be mounted on a printed wiring circuit board (23) for mounting IC (17) and an edge including a connecting portion to a conductive pattern (25) disposed on the printed wiring circuit board (23). When the top end is connected with the conductive pattern (25) by means of a solder (27) in mounting the printed wiring circuit board (23) of IC (17), the vicinity of the mounting portion has conductivity in a using frequency band, which is less than a few tens MHz.
摘要:
Contact structures exhibiting resilience or compliance for a variety of electronic components are formed by bonding a free end of a wire to a substrate, configuring the wire into a wire stem having a springable shape, severing the wire stem, and overcoating the wire stem with at least one layer of a material chosen primarily for its structural (resiliency, compliance) characteristics. A variety of techniques for configuring, severing, and overcoating the wire stem are disclosed. In an exemplary embodiment, a free end of a wire stem is bonded to a contact area on a substrate, the wire stem is configured to have a springable shape, the wire stem is severed to be free-standing by an electrical discharge, and the free-standing wire stem is overcoated by plating. A variety of materials for the wire stem (which serves as a falsework) and for the overcoat (which serves as a superstructure over the falsework) are disclosed. Various techniques are described for mounting the contact structures to a variety of electronic components (e.g., semiconductor wafers and dies, semiconductor packages, interposers, interconnect substrates, etc.), and various process sequences are described. The resilient contact structures described herein are ideal for making a nulltemporarynull (probe) connections to an electronic component such as a semiconductor die, for burn-in and functional testing. The self-same resilient contact structures can be used for subsequent permanent mounting of the electronic component, such as by soldering to a printed circuit board (PCB). An irregular topography can be created on or imparted to the tip of the contact structure to enhance its ability to interconnect resiliently with another electronic component. Among the numerous advantages of the present invention is the great facility with which the tips of a plurality of contact structures can be made to be coplanar with one another. Other techniques and embodiments, such as wherein the falsework wirestem protrudes beyond an end of the superstructure, or is melted down, and wherein multiple free-standing resilient contact structures can be fabricated from loops, are described.
摘要:
A semiconductor device 10 includes a pair of electrodes 16 and a conductive connection member 21 electrically bonded to the pair of electrodes 16. At least a portion of a perimeter of a bonding surface 24 of at least one of the pair of electrodes 16 and the conductive connection member 21 includes an electromigration reducing area 22.
摘要:
There is provided a novel Cu bonding wire that achieves a favorable FAB shape and achieve a favorable bond reliability of the 2nd bonding part even in a rigorous high-temperature environment. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of atomic % or more formed on a surface of the core material. The bonding wire is characterized in that:
in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.0 or less where X is defined as an average value of a ratio of a Pd concentration CPd (atomic %) to an Ni concentration CNi (atomic %), CPd/CNi, for all measurement points in the coating layer, the total number of measurement points in the coating layer whose absolute deviation from the average value X is or less is 50% or more relative to the total number of measurement points in the coating layer, and the bonding wire satisfies at least one of following conditions (i) and (ii): (i) a concentration of In relative to the entire wire is 1 ppm by mass or more and 100 ppm by mass or less; and (ii) a concentration of Ag relative to the entire wire is 1 ppm by mass or more and 500 ppm by mass or less.