摘要:
A method of electrically connecting a microelectronic component having a first surface bearing a plurality of contacts. The method including the steps of forming a subassembly by juxtaposing a connection component having a support structure and a plurality of elongated posts extending substantially parallel to one another from a first surface of the support structure with the microelectronic component so that the support structure overlies the surface of the component with the posts extending away from the component and electrically connecting the posts to the contacts of the microelectronic component.
摘要:
A method of making resistors includes providing a sacrificial layer. Conductive material is then formed over a region of the sacrificial layer. Resistive material is then deposited over the first surface of the sacrificial layer such that the resistive material covers the sacrificial layer and the conductive material. A portion of the sacrificial layer is then removed to expose the conductive material. A method of making resistors includes the steps of providing a sacrificial layer, removing at least a portion of the sacrificial layer from regions of the sacrificial layer so as to create a plurality of cavities within the sacrificial layer, plating said cavities with a conductive material, disposing resistive material over the first surface of the sacrificial layer such that resistive material covers the sacrificial layer and said conductive material, and removing at least a portion of said sacrificial layer to expose the conductive material. In another embodiment, a method of making resistors includes the steps of providing a sacrificial layer having a roughened first surface and a second surface, depositing resistive material over the first surface of the sacrificial layer such that the resistive material covers the first surface of the sacrificial layer, and selectively etching the sacrificial layer to form electrodes.
摘要:
By causing the movement of charge from a toner to a latent image carrier, the amount of charge of the toner is lowered to an amount of charge suitable for facilitating the transfer of toner so as to improve the transfer efficiency. For this, an image forming apparatus includes a latent image carrier and a developing means for forming a negatively chargeable toner layer composed of two stories or less on a toner carrier by a toner layer thickness regulating member. An electrostatic latent image on the latent image carrier is developed with the toner to form a visible image and the visible image is transferred to a transfer medium. Further, the work function (Φopc) of the surface of the latent image carrier is set to be larger than the work function (Φt) of the toner.
摘要:
A method of making a semiconductor chip assembly includes the steps of providing a semiconductor chip with contacts and a dielectric substrate wiring layer with terminals, forming a plurality of conductive elastomeric posts such that each post connects one terminal to one contact, and after forming the conductive elastomeric posts, injecting compliant material between the semiconductor chip and the dielectric substrate wiring layer to form a compliant layer. Another method of making a semiconductor chip assembly includes providing a semiconductor chip with contacts and a dielectric substrate wiring layer with terminals, dispensing a conductive elastomeric material over each of the contacts or over each of the terminals, juxtaposing the chip and the wiring layer such that conductive elastomeric material connects each contact to one of the terminals, and after the juxtaposing step, injecting a compliant material between the chip and the wiring layer and around the conductive elastomeric material to form a compliant layer, and curing the conductive elastomeric material and the compliant material.
摘要:
A method of making a microelectronic package includes providing a sacrificial layer having a first surface and providing an optoelectronic element having a front face including one or more contacts and a rear surface and securing the rear surface of the optoelectronic element over the first surface of the sacrificial layer. The one or more contacts are then electrically interconnected with one or more conductive pads on the sacrificial layer and a curable and at least partially transparent encapsulant is provided over the first surface of the sacrificial layer so as to encapsulate the optoelectronic element and the conductive pads. The encapsulant is then cured the sacrificial layer is at least partially removed so as to leave said one or more conductive pads on a bottom surface of the encapsulant, the bottom surface of the encapsulant defining the bottom of the package. The optoelectronic element may include a light sensitive chip such as an ultraviolet-erasable programmable read-only memory (UV EPROM) or a light emitting chip, such as a light emitting diode (LED).
摘要:
A method of making a microelectronic assembly includes providing a connection component including a dielectric element with electrically conductive parts, providing a fugitive material in contact with the dielectric element and providing a curable material on the dielectric element after providing the fugitive material and curing the curable material to provide a compliant element so that the fugitive material isolates the electrically conductive parts from the compliant element. The method also includes storing the connection component with the fugitive material and the compliant element. After the storing step, the fugitive material is removed from the connection component and the electrically conductive parts are then connected to a microelectronic element. The step of removing the fugitive material is generally performed less than 24 hours before the electrically conductive parts are connected together and preferably less than one hour before the parts are connected together. The fugitive material may include a liquid soluble material removable by chemical treatment, or a material which may be removed upon exposure to heat, radiation or ultraviolet light.
摘要:
A connection component for a microelectronic device such as a semiconductor chip incorporates a support layer and conductive structures extending across a surface of the support layer. The conductive structures have anchors connecting them to the support layer, and releasable or unanchored portions. A method of making a connection component includes removing material from the conductive structures or the support layer or both to form the anchors.
摘要:
A compliant semiconductor chip package with fan-in leads and a method for manufacturing the same. The package, or “assembly”, contains a multiplicity of bond ribbons connected between the contacts of a semiconductor chip and corresponding terminals on a top surface of a compliant layer. The compliant layer provides stress relief to the bond ribbons encountered during handling or affixing the assembly to an external substrate. The chip package also contains a dielectric layer adjacent to at least one end of the bond ribbons. The dielectric layer relieves mechanical stresses associated with the thermal mismatch of assembly and substrate materials during thermal cycling. The assembly can be manufactured without the need for any bond wiring tools since the bond ribbons are patterned and formed during a standard photolithographic stage within the manufacturing process. The manufacturing process is also amenable to simultaneous assembly of a multiplicity of undiced chips on a wafer or simultaneous assembly of diced chips in a processing boat.
摘要:
A method of manufacturing a semiconductor chip package. A sacrificial layer is used as a base to selectively form an array of conductive pads such that a central region is defined by the pads. A back surface of a semiconductor chip is next attached to the sacrificial layer within the central region between the pads so that the contact bearing surface of the chip faces away from the sacrificial layer. The chip contacts are then electrically connected to respective pads, typically by wire bonding a wire therebetween. A curable, dielectric liquid encapsulant is then deposited on the sacrificial layer such that the pads, electrical connections and chip are fully encapsulated, as by an overmolding operation. The encapsulant is then cured and the sacrificial layer is either completely removed or is selectively removed to expose a surface of the pads for electrical attachment to a PWB and the back surface of the chip for creating a direct thermal path from the chip to the PWB.
摘要:
A connector for microelectronic elements includes electrically conductive, elongated leads having contact portions underlying a compliant layer. The contact portion of each lead overlies a pedestal portion of the compliant layer. The pedestal portion is at least partially isolated from the remaining portion of the compliant layer by gaps in the compliant layer. The pedestals may thus deflect horizontally, compensating for relative movement between the connector and the microelectronic element. Portions of the leads spanning the gaps may be curved to facilitate deflection. The pedestals may be attached to a substrate having terminals. A terminal end of each lead is then electrically connected to the terminal in the substrate, either through a plated through-hole, or by bending downward and bonding. The pedestals may support a plurality of leads along their length. Alternatively, the pedestals may support only a single respective lead, in which case the pedestal is isolated from neighboring pedestals and may deflect in a plurality of horizontal directions.