Abstract:
A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
Abstract:
A semiconductor device has an interposer frame mounted over a carrier. A semiconductor die has an active surface and bumps formed over the active surface. The semiconductor die can be mounted within a die opening of the interposer frame or over the interposer frame. Stacked semiconductor die can also be mounted within the die opening of the interposer frame or over the interposer frame. Bond wires or bumps are formed between the semiconductor die and interposer frame. An encapsulant is deposited over the interposer frame and semiconductor die. An interconnect structure is formed over the encapsulant and bumps of the first semiconductor die. An electronic component, such as a discrete passive device, semiconductor die, or stacked semiconductor die, is mounted over the semiconductor die and interposer frame. The electronic component has an I/O count less than an I/O count of the semiconductor die.
Abstract:
A semiconductor wafer has an insulating layer formed over an active surface of the wafer. A conductive layer is formed over the insulating layer. A first via is formed from a back surface of the semiconductor wafer through the semiconductor wafer and insulating layer to the conductive layer. A conductive material is deposited in the first via to form a conductive TSV. An insulating material can be deposited in the first via to form an insulating core within the conductive via. After forming the conductive TSV, a second via is formed around the conductive TSV from the back surface of the semiconductor wafer through the semiconductor wafer and insulating layer to the conductive layer. An insulating material is deposited in the second via to form an insulating annular ring. The conductive via can be recessed within or extend above a surface of the semiconductor die.
Abstract:
A semiconductor device has a plurality of semiconductor die or components mounted over a carrier. A leadframe is mounted over the carrier between the semiconductor die. The leadframe has a plate and bodies extending from the plate. The bodies of the leadframe are disposed around a perimeter of the semiconductor die. An encapsulant is deposited over the carrier, leadframe, and semiconductor die. A plurality of conductive vias is formed through the encapsulant and electrically connected to the bodies of the leadframe and contact pads on the semiconductor die. An interconnect structure is formed over the encapsulant and electrically connected to the conductive vias. A first channel is formed through the interconnect structure, encapsulant, leadframe, and partially through the carrier. The carrier is removed to singulate the semiconductor die. A second channel is formed through the plate of the leadframe to physically separate the bodies of the leadframe.
Abstract:
A flip chip semiconductor package has a substrate with a plurality of active devices. A contact pad is formed on the substrate in electrical contact with the plurality of active devices. A passivation layer, second barrier layer, and adhesion layer are formed between the substrate and an intermediate conductive layer. The intermediate conductive layer is in electrical contact with the contact pad. A copper inner core pillar is formed by plating over the intermediate conductive layer. The inner core pillar has a rectangular, cylindrical, toroidal, or hollow cylinder form factor. A solder bump is formed around the inner core pillar by plating solder material and reflowing the solder material to form the solder bump. A first barrier layer and wetting layer are formed between the inner core pillar and solder bump. The solder bump is in electrical contact with the intermediate conductive layer.
Abstract:
A PiP semiconductor device has an inner known good semiconductor package. In the semiconductor package, a first via is formed in a temporary carrier. A first conductive layer is formed over the carrier and into the first via. The first conductive layer in the first via forms a conductive bump. A first semiconductor die is mounted to the first conductive layer. A first encapsulant is deposited over the first die and carrier. The semiconductor package is mounted to a substrate. A second semiconductor die is mounted to the first conductive layer opposite the first die. A second encapsulant is deposited over the second die and semiconductor package. A second via is formed in the second encapsulant to expose the conductive bump. A second conductive layer is formed over the second encapsulant and into the second via. The second conductive layer is electrically connected to the second die.
Abstract:
A semiconductor device has a build-up interconnect structure including a first insulating layer with a first material and a second insulating layer with a second material. A first conductive layer is formed over the first insulating layer, and the second insulating layer is formed over the first conductive layer. An optional third insulating layer has the second material and is formed over the second insulating layer. A fourth insulating layer has the first material and is formed over the third insulating layer. The second, third, and fourth insulating layers are cured sequentially or simultaneously. The first material includes a greater tensile strength, elastic modulus, and CTE than the second material. The build-up interconnect structure is formed over a semiconductor wafer or semiconductor die in a reconstituted panel. Alternatively, the build-up interconnect structure is formed over a carrier and a semiconductor die is mounted over the build-up interconnect structure.
Abstract:
A semiconductor device comprises a first semiconductor package including a first interconnect structure extending over a surface of the first semiconductor package. The first semiconductor package includes an interposer and a second semiconductor die disposed over the interposer. A second encapsulant is deposited over the interposer and second semiconductor die. A first semiconductor die is disposed over the surface of the first semiconductor package. A second interconnect structure extends from the first semiconductor die opposite the first semiconductor package. A first encapsulant is deposited over the first semiconductor package and first semiconductor die. A portion of the first encapsulant over the first interconnect structure and second interconnect structure is removed. A discrete component is disposed on the surface of the first semiconductor package. A build-up interconnect structure is formed over the first semiconductor package and first semiconductor die. The first semiconductor package includes a molded laser package.
Abstract:
A semiconductor device has a semiconductor die and encapsulant deposited over the semiconductor die. A first insulating layer is formed over the die and encapsulant. The first insulating layer is cured with multiple dwell cycles to enhance adhesion to the die and encapsulant. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. The second insulating layer is cured with multiple dwell cycles to enhance adhesion to the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. The first, second, and third insulating layers have different CTE. The second insulating layer or third insulating layer is cured to a dense state to block moisture.
Abstract:
A semiconductor device has a substrate. A plurality of conductive vias is formed through the substrate. A conductive layer is formed over the substrate. An insulating layer is formed over conductive layer. A portion of the substrate is removed to expose the conductive vias. A plurality of vertical interconnect structures is formed over the substrate. A first semiconductor die is disposed over the substrate. A height of the vertical interconnect structures is less than a height of the first semiconductor die. An encapsulant is deposited over the first semiconductor die and the vertical interconnect structures. A first portion of the encapsulant is removed from over the first semiconductor die while leaving a second portion of the encapsulant over the vertical interconnect structures. The second portion of the encapsulant is removed to expose the vertical interconnect structures. A second semiconductor die is disposed over the first semiconductor die.