摘要:
A catalyst including between 50.0 and 99.8 percent by weight of iron, between 0 and 5.0 percent by weight of a first additive, between 0 and 10 percent by weight of a second additive, and a carrier. The first additive is ruthenium, platinum, copper, cobalt, zinc, or a metal oxide thereof. The second additive is lanthanum oxide, cerium oxide, magnesium oxide, aluminum oxide, silicon dioxide, potassium oxide, manganese oxide, or zirconium oxide.
摘要:
The present invention relates to methods for producing metal-supported thin layer skeletal catalyst structures, to methods for producing catalyst support structures without separately applying an intermediate washcoat layer, and to novel catalyst compositions produced by these methods. Catalyst precursors may be interdiffused with the underlying metal support then activated to create catalytically active skeletal alloy surfaces. The resulting metal-anchored skeletal layers provide increased conversion per geometric area compared to conversions from other types of supported alloy catalysts of similar bulk compositions, and provide resistance to activity loss when used under severe on-stream conditions. Particular compositions of the metal-supported skeletal catalyst alloy structures can be used for conventional steam methane reforming to produce syngas from natural gas and steam, for hydrodeoxygenation of pyrolysis bio-oils, and for other metal-catalyzed reactions inter alia.
摘要:
In one embodiment, the present application discloses a catalyst composition comprising: a) a reaction solvent or a reaction medium; b) organometallic nanoparticles comprising: i) a nanoparticle (NP) catalyst, prepared by a reduction of an iron salt in an organic solvent, wherein the catalyst comprises at least one other metal selected from the group consisting of Pd, Pt, Au, Ni, Co, Cu, Mn, Rh, Jr, Ru and Os or mixtures thereof; c) a ligand; and d) a surfactant; wherein the metal or mixtures thereof is present in less than or equal to 50,000 ppm relative to the iron salt.
摘要:
A catalyst for exhaust gas purification includes a carrier and a platinum group element supported on the carrier. The carrier includes a modified aluminum borate which contains an aluminum borate and at least one of oxides of an element selected from the group consisting of Zr, Si, Fe, and Ti. The modified aluminum borate contains the oxide in a concentration of 0.06% to 18% by mass relative to the mass of the modified aluminum borate.
摘要:
A poison-resistant catalytic converter includes a washcoat having a support material comprised of titania and/or silica and a plurality of platinum group metal particles disposed in the support material. The washcoat is disposed on a substrate having a plurality of cells that define respective apertures. The catalytic converter is resistant to poisoning from sulfur and phosphorous compounds while operating at low temperatures. Applications include spark ignited internal combustion engines in combined heat and power systems, vehicles, combustion turbines, boilers and other applications for utilities, industry and vehicle emissions control.
摘要:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
摘要:
A precursor for a Fischer-Tropsch catalyst includes a catalyst support, cobalt or iron on the catalyst support and one or more noble metals on the catalyst support, wherein the cobalt or iron is at least partially in the form of its carbide in the as-prepared catalyst precursor, a method for preparing said precursor and the use of said precursor in a Fischer-Tropsch process.
摘要:
The present invention relates to processes utilising hydrogen species selectively permeable membranes for synthesis of products. The present invention also relates to processes for synthesising products from hydrogen insertion or hydrogenation reactions utilising hydrogen species permeable membranes. The present invention also relates to processes for synthesising ammonia utilising hydrogen species selectively permeable membranes. The membranes provide surfaced modified membranes that can comprise a porous layer containing a plurality of reactive sites comprising a metal species and a catalyst for promoting a reaction within the layer.
摘要:
Provided was a monolithic catalyst for synthesizing an oxalate by carbon monoxide (CO) gaseous-phase coupling, a preparation method and the use thereof. In the catalyst, a ceramic honeycomb or a metal honeycomb was used as skeletal carrier, metal oxides were used as a carrier coating, precious metals Pt, Pd, Ir, Rh were used as active ingredients, as well as Fe, Co, Ni were used as additives, wherein the carrier coating accounts for 5 to 50 wt. % of the honeycomb carrier; the active ingredients of the catalyst account for 0.1 to 5 wt. % of the carrier coating; the additives of the catalyst account for 0.3 to 10 wt. % of the carrier coating; and the atomic ratio of the active ingredients to the additives was 0.1 to 3. the reaction for synthesizing the oxalate was carried out in a fixed bed reactor, wherein, N2 was used as a carrier gas. The volume ratio of N2:CO:Alkyl nitrite was 20-80:5-60:10-40, and the retention time was 0.5-10 s.
摘要:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.