Abstract:
A system and method for stacking semiconductor devices in three dimensions is provided. In an embodiment two or more semiconductor dies are attached to a carrier and encapsulated. Connections of the two or more semiconductor dies are exposed, and the two or more semiconductor dies may be thinned to form connections on an opposite side. Additional semiconductor dies may then be placed in either an offset or overhanging position.
Abstract:
A method includes forming a first oxide layer on a surface of an integrated heat spreader, and forming a second oxide layer on top surfaces of fins, wherein the fins are parts of a heat sink. The integrated heat spreader is bonded to the heat sink through the bonding of the first oxide layer to the second oxide layer.
Abstract:
A work piece includes a first copper-containing pillar having a top surface and sidewalls, and a first protection layer on the sidewalls, and not over the top surface, of the first copper-containing pillar. A test pad includes a second copper-containing pillar having a top surface and sidewalls. The test pad is electrically coupled to the first copper-containing pillar. A second protection layer is disposed on the sidewalls, and not over the top surface, of the second copper-containing pillar. The first and the second protection layers include a compound of copper and a polymer, and are dielectric layers.
Abstract:
A solder bump structure for a ball grid array (BGA) includes at least one under bump metal (UBM) layer and a solder bump formed over the at least one UBM layer. The solder bump has a bump width and a bump height and the ratio of the bump height over the bump width is less than 1.
Abstract:
A method for forming a semiconductor structure. A semiconductor substrate including a plurality of dies mounted thereon is provided. The substrate includes a first portion proximate to the dies and a second portion distal to the dies. In some embodiments, the first portion may include front side metallization. The second portion of the substrate is thinned and a plurality of conductive through substrate vias (TSVs) is formed in the second portion of the substrate after the thinning operation. Prior to thinning, the second portion may not contain metallization. In one embodiment, the substrate may be a silicon interposer. Further back side metallization may be formed to electrically connect the TSVs to other packaging substrates or printed circuit boards.
Abstract:
A work piece includes a copper bump having a top surface and sidewalls. A protection layer is formed on the sidewalls, and not on the top surface, of the copper bump. The protection layer includes a compound of copper and a polymer, and is a dielectric layer.
Abstract:
A package system includes a first integrated circuit disposed over an interposer. The interposer includes at least one molding compound layer including a plurality of electrical connection structures through the at least one molding compound layer. A first interconnect structure is disposed over a first surface of the at least one molding compound layer and electrically coupled with the plurality of electrical connection structures. The first integrated circuit is electrically coupled with the first interconnect structure.
Abstract:
The mechanisms for forming bump structures enable forming bump structures between a chip and a substrate eliminating or reducing the risk of solder shorting, flux residue and voids in underfill. A lower limit can be established for a α ratio, defined by dividing the total height of copper posts in a bonded bump structure divided by the standoff of the bonded bump structure, to avoid shorting. A lower limit may also be established for standoff the chip package to avoid flux residue and underfill void formation. Further, aspect ratio of a copper post bump has a lower limit to avoid insufficient standoff and a higher limit due to manufacturing process limitation. By following proper bump design and process guidelines, yield and reliability of chip packages may be increases.
Abstract:
The mechanisms for forming bump structures reduce variation of standoffs between chips and package substrates. By planarizing the solder layer on bump structures on chips and/or substrates after plating, the heights of bump structures are controlled to minimize variation due to within die and within wafer locations, pattern density, die size, and process variation. As a result, the standoffs between chips and substrates are controlled to be more uniform. Consequently, underfill quality is improved.
Abstract:
A package component includes a substrate, wherein the substrate has a front surface and a back surface over the front surface. A through-via penetrates through the substrate. A conductive feature is disposed over the back surface of the substrate and electrically coupled to the through-via. A first dielectric pattern forms a ring covering edge portions of the conductive feature. An Under-Bump-Metallurgy (UBM) is disposed over and in contact with a center portion of the conductive feature. A polymer contacts a sidewall of the substrate. A second dielectric pattern is disposed over and aligned to the polymer. The first and the second dielectric patterns are formed of a same dielectric material, and are disposed at substantially a same level.