Abstract:
Contact tip structures are fabricated on sacrificial substrates for subsequent joining to interconnection elements including composite interconnection elements, monolithic interconnection elements, tungsten needles of probe cards, contact bumps of membrane probes, and the like. The spatial relationship between the tip structures can lithographically be defined to very close tolerances. The metallurgy of the tip structures is independent of that of the interconnection element to which they are attached, by brazing, plating or the like. The contact tip structures are readily provided with topological (small, precise, projecting, non-planar) contact features, such as in the form of truncated pyramids, to optimize electrical pressure connections subsequently being made to terminals of electronic components. Elongate contact tip structures, adapted in use to function as spring contact elements without the necessity of being joined to resilient contact elements are described. Generally, the invention is directed to making (pre-fabricating) relatively nullperfectnull contact tip structures (nulltipsnull) and joining them to relatively nullimperfectnull interconnection elements to improve the overall capabilities of resulting nulltippednull interconnection elements.
Abstract:
A method and apparatus for detecting an arc condition in a semiconductor test system is disclosed. While probes in a semiconductor test system are being moved into or out of contact with a semiconductor wafer, the voltage level of power supplied to selected ones of the probes is monitored. If the voltage level of the power exceeds a level that could cause an arc between the probes and the semiconductor wafer while the wafer is being moved, an indication is generated that an arc condition has been detected.
Abstract:
A method for heat-treating a plurality of microelectronic structures attached to a non-metallic substrate is disclosed. Each of the plurality of microelectronic structures is comprised of a metallic material, and ones of the plurality of metallic microelectronic structures are insulated from other ones of the plurality of microelectronic structures. An application of the method is for heat-treatment of resilient microstructures. The method comprises the steps of: (a) placing the non-metallic substrate and the plurality of microelectronic structures in an oscillating electromagnetic field, whereby the plurality of microelectronic structures are heated by the oscillating electromagnetic field and the non-metallic substrate is essentially not heated by the oscillating electromagnetic field; (b) maintaining the non-metallic substrate and the plurality of microelectronic structures in the oscillating electromagnetic field until each of the plurality of microelectronic structures obtains a defined heat-treatment temperature substantially greater than an ambient temperature; (c) removing the non-metallic substrate and the plurality of microelectronic structures from the oscillating electromagnetic field; and (d) cooling the plurality of microelectronic structures to the ambient temperature.
Abstract:
Temporary connections to spring contact elements extending from an electronic component such as a semiconductor device are made by urging the electronic component, consequently the ends of the spring contact elements, vertically against terminals of an interconnection substrate, or by horizontally urging terminals of an interconnection substrate against end portions of the spring contact elements. A variety of terminal configurations are disclosed.
Abstract:
Traces routed through a computer depiction of a routing area of an electronics system comprise a plurality of connected nodes. Forces are assigned to the nodes, and the nodes are moved in accordance with the forces. The forces may be based on such things as the proximity of the nodes to each other and to obstacles in the routing area. This tends to smooth, straighten and/or shorten the traces, and may also tend to correct design rule violations.
Abstract:
An interposer includes a substrate having opposing surfaces. Conductive terminals are disposed on both surfaces, and conductive terminals on one surface are electrically connected to conductive terminals on the opposing surface. Elongate, springable, conducive interconnect elements are fixed to conductive terminals on both surfaces.
Abstract:
Described herein is a probe card assembly providing signal paths for conveying high frequency signals between bond pads of an integrated circuit (IC) and an IC tester. The frequency response of the probe card assembly is optimized by appropriately distributing, adjusting and impedance matching resistive, capacitive and inductive impedance values along the signal paths so that the interconnect system behaves as an appropriately tuned Butterworth or Chebyshev filter.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate. The spring contact elements are suitably mounted by their base end portions to corresponding terminals on an electronic component, such as a space transformer or a semiconductor device, whereupon the sacrificial substrate is removed so that the contact ends of the spring contact elements extend above the surface of the electronic component. In an exemplary use, the spring contact elements are thereby disposed on a space transformer component of a probe card assembly so that their contact ends effect pressure connections to corresponding terminals on another electronic component, for the purpose of probing the electronic component.
Abstract:
By segregating at least a substantial portion of the power connections to the space transformer component (506, 700, 800) from the signal connections thereto, constraints on the interposer component (504) may be relaxed. This is particularly advantageous in the context of probing one or more high power semiconductor components. The technique of the present invention provides for a plurality of signals (including power and ground) to be inserted into an electronic component such as a space transformer both from a one main surface thereof and an edge (periphery) thereof to an opposite main surface thereof. The space transformer includes pads (522, 706, 810) for engaging, by means of spring elements (524), component (508) to be tested and includes exposed edge pads (750, 804, 854) for engagement by a flexible cable (752) for transmission of power and ground signals to the space transformer. The system also includes an interposer (504) having resilient contacts (514, 516) for electrically interconnecting a probe card (502) to the space transformer (506).
Abstract:
A method for manufacturing raised contacts on the surface of an electronic component includes bonding one end of a wire to an area, such as a terminal, of the electronic component, and shaping the wire into a wire stem configuration (including straight, bent two-dimensionally, bent three-dimensionally). A coating, having one or more layers, is deposited on the wire stem to (i) impart resilient mechanical characteristics to the shaped wire stem and (ii) more securely attach ("anchor") the wire stem to the terminal. Gold is one of several materials described that may be selected for the wire stem. A variety of materials for the coating, and their mechanical properties, are described. The wire stems may be shaped as loops, for example originating and terminating on the same terminal of the electronic component, and overcoated with solder. The use of a barrier layer to prevent unwanted reactions between the wire stem and its environment (e.g., with a solder overcoat) is described. Bonding a second end of the wire to a sacrificial member, then removing the sacrificial member, is described. A plurality of wire stems may be formed on the surface of the electronic component, from different levels thereon, and may be severed so that their tips are coplanar with one another. Many wire stems can be mounted, for example in an array pattern, to one or to both sides of electronic components including semiconductor dies and wafers, plastic and ceramic semiconductor packages, and the like.