Abstract:
Disclosed is a board reinforcing structure for reinforcing a circuit board in which an electronic component is mounted on a first surface, the electronic component having an electrode arranged in a rectangular-shaped region on the first surface. The board reinforcing structure includes a reinforcing member bonded to positions corresponding to corner parts of four corners of the rectangular-shaped region on a second surface provided on a side opposite to the first surface of the circuit board. In the board reinforcing structure, corresponding one of notches is formed in the reinforcing member at a position corresponding to one of the corner parts of the four corners of the rectangular-shaped region, and at least two apexes of the reinforcing member directed to an outside are formed to shape a contour thereof with the one of the notches.
Abstract:
To provide an electronic component, containing: a wiring board containing electrode pads; a component including a plurality of electrodes, the component being mounted on the wiring board; a sealing resin covering the component; and a plurality of terminals configured to connect a wiring provided within the wiring board to an external substrate, wherein the plurality of electrodes and the electrode pads are connected with solder, and wherein a first resin layer and a second resin layer are provided between the solder and the sealing resin in this order from the side of the solder, where the first resin layer has a first Young's modulus and the second resin layer has a second Young's modulus larger than the first Young's modulus.
Abstract:
A packaging structure for mounting an electronic component on a printed circuit board is provided, which includes an external connecting terminal of the electronic component connected to an electrode pad of the printed circuit board; a through-hole penetrating through the printed circuit board, the through-hole formed in a periphery of an electronic component mounting area; and a clamping member including a middle portion extending through the through-hole, and a first end portion and a second end portion extending from the middle portion. The first end portion and the second end portion are bent such that the electronic component and the printed circuit board are sandwiched and clamped by the first end portion and the second end portion.
Abstract:
An apparatus for forming a solder dam on a lead of an electronic component is disclosed. The apparatus for forming a solder dam includes a wire material that transfers an ink that prevents adhesion of a solder to the lead; a wire material conveying device that conveys the wire material along a surface of the lead; and an ink supply device that supplies the ink to the wire material.
Abstract:
A surface acoustic wave device includes a piezoelectric substrate, an interdigital transducer (IDT) formed on the piezoelectric substrate, an interconnection electrode that is provided on the piezoelectric substrate and is connected to the IDT, the IDT being made of a metal identical to that of the IDT, an inorganic insulation layer that is provided on the piezoelectric substrate so that at least the interconnection electrode is exposed, an insulative resin layer that is located on an interface between the inorganic insulation layer and a portion of the interconnection electrode exposed from the inorganic insulation layer and is formed so as to cover a side surface of the interconnection electrode, and a metal layer that is provided on the interconnection electrode and the insulative resin layer.
Abstract:
A method of manufacturing an acoustic wave device includes forming a first sealing portion on a substrate having an acoustic wave element thereon so that a functional region, in which an acoustic wave oscillates, of the acoustic wave element acts as a first non-covered portion and a cutting region for individuating acts as a second non-covered portion, forming a second sealing portion on the first sealing portion so as to cover the first non-covered portion and the second non-covered portion, and cutting off the substrate and the second sealing portion so that the second non-covered portion is divided.
Abstract:
A method of bonding a piezoelectric element and an electrode, including the steps of forming a first coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the piezoelectric element, and forming a second coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the electrode. The combination of the materials of the first and second coatings is preferably Au/Au, Au/Al, Zn/Cu, or Sn/Cu. The method further includes the step of bringing the first and second coatings into close contact with each other and heating them under pressure to form a metallic bond or intermetallic compound between the first and second coatings, thereby bonding the piezoelectric element and the electrode.
Abstract:
An electro-conductive bonding material includes: metal components of a high-melting-point metal particle that have a first melting point or higher; a middle-melting-point metal particle that has a second melting point which is first temperature or higher, and second temperature or lower, the second temperature is lower than the first melting point and higher than the first temperature; and a low-melting-point metal particle that has a third melting point or lower, the third melting point is lower than the first temperature.
Abstract:
Disclosed is a mounting structure for mounting an electronic component on a circuit board. The mounting structure includes an interposer provided between the electronic component and the circuit board; and a plurality of spiral conductors formed in the interposer. The plurality of spiral conductors have one end thereof bonded to corresponding one of external connection terminals of the electronic component and the other end thereof bonded to corresponding one of electrodes of the electronic component.
Abstract:
Disclosed is a board reinforcing structure for reinforcing a circuit board in which an electronic component is mounted on a first surface, the electronic component having an electrode arranged in a rectangular-shaped region on the first surface. The board reinforcing structure includes a reinforcing member bonded to positions corresponding to corner parts of four corners of the rectangular-shaped region on a second surface provided on a side opposite to the first surface of the circuit board. In the board reinforcing structure, corresponding one of notches is formed in the reinforcing member at a position corresponding to one of the corner parts of the four corners of the rectangular-shaped region, and at least two apexes of the reinforcing member directed to an outside are formed to shape a contour thereof with the one of the notches.