Abstract:
An embodiment of a method of attaching a semiconductor die to a substrate includes placing a bottom surface of the die over a top surface of the substrate with an intervening die attach material. The method further includes contacting a top surface of the semiconductor die and the top surface of the substrate with a conformal structure that includes a non-solid, pressure transmissive material, and applying a pressure to the conformal structure. The pressure is transmitted by the non-solid, pressure transmissive material to the top surface of the semiconductor die. The method further includes, while applying the pressure, exposing the assembly to a temperature that is sufficient to cause the die attach material to sinter. Before placing the die over the substrate, conductive mechanical lock features may be formed on the top surface of the substrate, and/or on the bottom surface of the semiconductor die.
Abstract:
A method includes providing a silicon-containing die and providing a heat sink having a palladium layer over a first surface of the heat sink. A first gold layer is located over one of a first surface of the die or the palladium layer. The silicon-containing die is bonded to the heat sink, where bonding includes joining the silicon-containing die and the heat sink such that the first gold layer and the palladium layer are between the first surface of the silicon-containing die and the first surface of the heat sink, and heating the first gold layer and the palladium layer to form a die attach layer between the first surface of the silicon-containing die and the first surface of the heat sink, the die attach layer comprising a gold interface layer having a plurality of intermetallic precipitates, each of the plurality of intermetallic precipitates comprising palladium, gold, and silicon.
Abstract:
A method of packaging a semiconductor die includes the steps of providing a flange (110), coupling one or more active die (341) to the flange with a lead-free die attach material (350), staking a leadframe (120) to the flange after coupling the one or more active die to the flange, electrically interconnecting the one or more active die and the leadframe with an interconnect structure (470), and applying a plastic material (130) over the flange, the one or more active die, the leadframe, and the interconnect structure.
Abstract:
A method of packaging a semiconductor die includes the steps of providing a flange (110), coupling one or more active die (341) to the flange with a lead-free die attach material (350), staking a leadframe (120) to the flange after coupling the one or more active die to the flange, electrically interconnecting the one or more active die and the leadframe with an interconnect structure (470), and applying a plastic material (130) over the flange, the one or more active die, the leadframe, and the interconnect structure.
Abstract:
A semiconductor structure (100) includes a substrate (110) having a first surface (111) with a mold lock feature (101). The semiconductor structure also includes a semiconductor chip (120) located over the first surface of the substrate. The semiconductor structure further includes an electrical isolator structure (340) located over the first surface of the substrate. The electrical isolator structure includes an electrical lead (341, 342) and an electrically insulative element (343) molded to the electrical lead. An optional portion (444) of the electrical isolator structure is located in the mold lock feature. The semiconductor structure additionally includes an adhesive element (450) located between and coupling the electrical isolator structure and the first surface of the substrate.
Abstract:
A method of packaging a semiconductor die includes the steps of providing a flange (110), coupling one or more active die (341) to the flange with a lead-free die attach material (350), staking a leadframe (120) to the flange after coupling the one or more active die to the flange, electrically interconnecting the one or more active die and the leadframe with an interconnect structure (470), and applying a plastic material (130) over the flange, the one or more active die, the leadframe, and the interconnect structure.
Abstract:
A method and apparatus for incorporation of high power device dies into smaller system packages by embedding metal “coins” having high thermal conductivity into package substrates, or printed circuit boards, and coupling the power device dies onto the metal coins is provided. In one embodiment, the power device die can be attached to an already embedded metal coin in the package substrate or PCB. The power device die can be directly coupled to the embedded metal coin or the power device die can be attached to a metallic interposer which is then bonded to the embedded metal coin. In another embodiment, the die can be attached to the metal coin and then the PCB or package substrate can be assembled to incorporate the copper coin. Active dies are coupled to each other either through wire bonds or other passive components, or using a built-up interconnect.
Abstract:
An embodiment of a semiconductor device includes a semiconductor substrate that includes a host substrate and an upper surface, an active area, a substrate opening in the semiconductor substrate that is partially defined by a recessed surface, and a thermally conductive layer disposed over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate within the active area. A method for fabricating the semiconductor device includes defining an active area, forming a gate electrode over a channel in the active area, forming a source electrode and a drain electrode in the active area on opposite sides of the gate electrode, etching a substrate opening in the semiconductor substrate that is partially defined by the recessed surface, and depositing a thermally conductive layer over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate over the channel.
Abstract:
An electronic device includes a semiconductor die having a lower surface, a sintered metallic layer underlying the lower surface of the semiconductor die, a thermally conductive flow layer underlying the sintered metallic layer, and a thermally conductive substrate underlying the thermally conductive flow layer.
Abstract:
A method for a packaged leadless semiconductor device including a heat sink flange to which semiconductor dies are coupled using a high temperature die attach process. The semiconductor device further includes a frame structure pre-formed with bent terminal pads. The frame structure is combined with the flange so that a lower surface of the flange and a lower section of each terminal pad are in coplanar alignment, and so that an upper section of each terminal pad overlies the flange. Interconnects interconnect the die with the upper section of the terminal pad. An encapsulant encases the frame structure, flange, die, and interconnects with the lower section of each terminal pad and the lower surface of the flange remaining exposed from the encapsulant.