Abstract:
The present invention includes electrical interconnections, methods of conducting electricity, and methods of reducing horizontal conductivity within an anisotropic conductive adhesive. In one embodiment, an electrical interconnection configured to electrically couple a first substrate and a second substrate includes: a bond pad of the first substrate having a male configuration; and a bond pad of the second substrate having a female configuration, the bond pad of the second substrate being configured to mate with the bond pad of the first substrate during electrical connection of the bond pads of the first substrate and the second substrate. A method of conducting electricity according to the present invention includes providing first and second bond pads individually defining a planar dimension; coupling the first and second bond pads at an interface having a surface area greater than the area of the planar dimension; and conducting electricity between the first and second bond pads following the coupling.
Abstract:
A retaining ring interconnect. A retaining ring is formed on a perimeter of a pad on each of two adjoining surfaces of two PCB substrates. A conductive paste is applied between the pads on the two adjoining surfaces. The retaining rings are aligned and facing with each other. By performing a heat compression process, the retaining rings are connected to encompass the conductive paste. A eutectic bond is thus formed to bond the two PCB substrates.
Abstract:
A wiring substrate for used in a small electronic component. The wiring substrate comprises: an insulating substrate; and a conductive land portion which is formed on a first surface of the insulating substrate and on which an electronic element is to be mounted via conductive adhesive to electrically couple an electrode of the electronic element with the conductive land portion. The thickness of the peripheral portion of the conductive land portion which surrounds the electronic element is thicker than that of the central portion of the conductive land portion. The insulating substrate may also have a conductive land portion which is formed on a second surface of the insulating substrate and which is electrically coupled with the conductive land portion formed on the first surface of the insulating substrate via a through hole penetrating through the insulating substrate.
Abstract:
A retaining ring interconnect. A retaining ring is formed on a perimeter of a pad on each of two adjoining surfaces of two PCB substrates. A conductive paste is applied between the pads on the two adjoining surfaces. The retaining rings are aligned and facing with each other. By performing a heat compression process, the retaining rings are connected to encompass the conductive paste. A eutectic bond is thus formed to bond the two PCB substrates.
Abstract:
An electronic control unit (ECU) includes a flexible circuit substrate having a first partition interconnected to a third partition by a second, flexible partition. The electronic control unit further includes a rigidizer having a first partition interconnected to a third partition by a second partition. When the ECU is twice folded, the second, flexible partition of the circuit substrate assumes an approximate ‘U’-shape, resulting in a reduced cracking and splitting rate than the prior art. In various embodiments of the present invention, the assumption of a ‘U’-shaped fold in the second, flexible partition of the circuit substrate is facilitated by multiple apertures in a second rigidizer partition, by a depression in a second rigidizer partition, or by non-slidably affixing a first circuit substrate partition to a first rigidizer partition via a first adhesive and non-slidably affixing a third circuit substrate partition to a third rigidizer partition via a second adhesive.
Abstract:
An integrated circuit package is provided with a ball landing area having a conductive structure for interlocking a conductive ball to the ball pad. The conductive structure improves the attachment strength between an integrated circuit package and an printed circuit board. In an exemplary embodiment, the locking structure is a conductive material added to the surface of the ball pad to provide a nonplanar interface, such as a dome or a step, which interlocks the conductive ball to the ball pad. The improved package construction increases the area of contact, moves the shear plane to a higher and larger portion on the conductive ball, and/or prevents a crack from propagating along a flat plane across the ball joint. This package construction maintains the small size of the ball land areas and the package, increases the life of the integrated circuit package, while offsetting the problem of package warpage.
Abstract:
An integrated circuit package is constructed to potential reduce stress and damage to an integrated circuit die. A rigid transition medium (220) is attached using adhesive layers (215, 42) and interfaces between a tape carrier (260) and the integrated circuit die (210). The integrated circuit package prevents damage such as die cracks and also enhances the service life of the packaged integrated circuit part.
Abstract:
A reflection characteristic in a high frequency region at a feeding point into a strip line is improved and the assembly of a strip line feeding apparatus facilitated by the method and apparatus herein. The strip line includes a strip line pattern on a surface of a first dielectric substrate having a ground conductor pattern disposed on the opposite surface thereof, and a second ground conductor pattern disposed on a surface of a second dielectric substrate. A serial high impedance portion is disposed at an area near the tip portion of the strip line pattern. The high impedance portion includes a portion of the strip line pattern having narrowed width or a hole disposed under a through-hole for an inner conductor, which electrically connects the strip line pattern and an inner conductor. Dimensions of the high impedance portion are controlled to cancel out parasitic susceptance due to the discontinuous structure. A matching through-hole is further disposed in the second dielectric substrate in an area separated from the tip portion of the strip line pattern by a distance of around 25% of the typical wave length. The matching through-hole is elongated to a land pattern in a hole disposed in the second ground conductor pattern so as to electrically connect the conductor strip pattern and the land pattern.
Abstract:
A semiconductor device in which fatigue failure of a solder layer underneath a semiconductor chip mounted on a base can be prevented from occurring due to repetitions of turn-on and -off of power during operation thereof, is provided, that is, a recess is formed in the base in a part underneath the semiconductor chip so as to prevent occurrence of thermal expansion in the base.
Abstract:
To provide a wired circuit board capable of surely preventing occurrence of a short circuit between a metal terminal layer and a metal supporting layer with a simple construction, to provide improvement in connection reliability and in voltage proof property, a wired circuit board comprises a base layer formed on a supporting board, a conductive layer formed on the base layer, a surface of the conductive layer being exposed by opening the supporting board and the base layer, and a metal plated layer formed on the conductive layer exposed in the openings of the supporting board and the base layer, wherein a specified space is defined between a periphery of the metal plated layer and a periphery of the opening of the supporting board.