Abstract:
A method includes laminating a Non-Conductive Film (NCF) over a first package component, and bonding a second package component on the first package component. The NCF and the second package component are on a same side of the first package component. Pillars of a mold tool are then forced into the NCF to form openings in the NCF. The connectors of the first package component are exposed through the openings.
Abstract:
A fine pitch package-on-package (PoP), and a method of forming, are provided. The PoP may be formed by placing connections, e.g., solder balls, on a first substrate having a semiconductor die attached thereto. A first reflow process is performed to elongate the solder balls. Thereafter, a second substrate having another semiconductor die attached thereto is connected to the solder balls. A second reflow process is performed to form an hourglass connection.
Abstract:
A method includes laminating a Non-Conductive Film (NCF) over a first package component, and bonding a second package component on the first package component. The NCF and the second package component are on a same side of the first package component. Pillars of a mold tool are then forced into the NCF to form openings in the NCF. The connectors of the first package component are exposed through the openings.
Abstract:
A fine pitch package-on-package (PoP), and a method of forming, are provided. The PoP may be formed by placing connections, e.g., solder balls, on a first substrate having a semiconductor die attached thereto. A first reflow process is performed to elongate the solder balls. Thereafter, a second substrate having another semiconductor die attached thereto is connected to the solder balls. A second reflow process is performed to form an hourglass connection.
Abstract:
This description relates to an integrated circuit device including a conductive pillar formed over a substrate. The conductive pillar has a sidewall surface and a top surface. The integrated circuit device further includes an under-bump-metallurgy (UBM) layer between the substrate and the conductive pillar. The UBM layer has a surface region. The integrated circuit device further includes a protection structure on the sidewall surface of the conductive pillar and the surface region of the UBM layer. The protection structure is formed of a non-metal material.
Abstract:
A power supply circuit for a PCI-E slot includes a control chip, a first electronic switch, and a second electronic switch. The control chip determines a status of a motherboard, outputting a control signal. A first terminal of the first electronic switch is connected to the control chip to receive the control signal, and connected to a +3.3V dual power supply of the motherboard through a first resistor. A second terminal of the first electronic switch is grounded. A third terminal of the first electronic switch is connected to a first terminal of the second electronic switch, and connected to the +3.3V dual power supply through a second resistor. A second terminal of the second electronic switch is connected to the +3.3V dual power supply. A third terminal of the second electronic switch is connected to a PCI-E slot.
Abstract:
An embodiment of the disclosure includes a conductive bump on a semiconductor die. A substrate is provided. A bond pad is over the substrate. An under bump metallurgy (UBM) layer is over the bond pad. A copper pillar is over the UBM layer. The copper pillar has a top surface with a first width and sidewalls with a concave shape. A nickel layer having a top surface and a bottom surface is over the top surface of the copper pillar. The bottom surface of the nickel layer has a second width. A ratio of the second width to the first width is between about 0.93 to about 1.07. A solder material is over the top surface of the cap layer.
Abstract:
A method of forming a device includes providing a substrate, and forming a solder bump over the substrate. A minor element is introduced to a region adjacent a top surface of the solder bump. A re-flow process is then performed to the solder bump to drive the minor element into the solder bump.
Abstract:
A sidewall protection structure is provided for covering at least a portion of a sidewall surface of a bump structure, in which a protection structure on the sidewalls of a Cu pillar and a surface region of an under-bump-metallurgy (UBM) layer is formed of at least one non-metal material layers, for example a dielectric material layer, a polymer material layer, or combinations thereof.
Abstract:
An integrated circuit device is disclosed. An exemplary integrated circuit device includes a first copper layer, a second copper layer, and an interface between the first and second copper layers. The interface includes a flat zone interface region and an intergrowth interface region, wherein the flat zone interface region is less than or equal to 50% of the interface.