Abstract:
This invention relates to a solder structure which provides enhanced fatigue life properties when used to bond substrates particularly at the second level such as BGA and CGA interconnections. The solder structure is preferably a sphere or column and has a metal layer wettable by solder and the structure is used to make solder connections in electronic components such as joining an electronic module such as a chip connected to a MLC which module is connected to a circuit board. The solder structure preferably has an overcoat of solder on the metal layer to provide a passivation coating to the metal layer to keep it clean from oxidation and corrosion and also provide a wettable surface for attachment of the solder structure to solder on the pads of the substrate being bonded.
Abstract:
The present invention relates generally to a new process for hermetically sealing of a high thermally conductive substrate, such as, an aluminum nitride substrate, using a low thermally conductive interposer and structure thereof. More particularly, the invention encompasses a hermetic cap which is secured to an aluminum nitride substrate using the novel thermal interposer. The novel thermal interposer basically comprises of layers of relatively high thermal conductive metallic materials sandwiching a core layer of low thermal conductive metallic material.
Abstract:
A device and method for hermetically sealing an integrated circuit chip between a substrate and a lid while providing effective dissipation of heat generated by the integrated circuit chip. The device includes an integrated circuit chip, carrier substrate, interface coolant, and a lid. The integrated circuit chip is attached to the top of the carrier substrate. The interface coolant is disposed on the top of the integrated circuit chip and the lid is placed on top of the carrier substrate/integrated circuit chip combination and contacts the interface coolant. The interface coolant provides a thermal path for conducting heat from the integrated circuit chip to the lid. The substrate is attached to a circuit board by a ceramic ball grid array (CBGA) or a ceramic column grid array (CCGA).
Abstract:
The present invention relates generally to a new method of repairing electrical lines, and more particularly to repairing electrical lines having an opening at the module level with devices in place. Various methods and processes are used to repair this open or defective portion in an electrical conductor line. It could be repaired by securing a jumper wire or nugget across the open or the repair could be made by a deposition process, which includes but is not limited to filling the opening with a solder type material or inserting a solder coated electrical wire and heating the solder and allowing the solder to melt and repair the open. One of the attributes of this invention is the ability to repair on a substrate or module on which active components such as chips, and passive components such as pins, capacitors, etc. have been attached. The invention also allows repair of fine line patterns which are normally not repairable by conventional techniques.
Abstract:
A semiconductor structure which includes a plurality of stacked semiconductor chips in a three dimensional configuration. There is a first semiconductor chip in contact with a second semiconductor chip. The first semiconductor chip includes a through silicon via (TSV) extending through the first semiconductor chip; an electrically conducting pad at a surface of the first semiconductor chip, the TSV terminating in contact at a first side of the electrically conducting pad; a passivation layer covering the electrically conducting pad, the passivation layer having a plurality of openings; and a plurality of electrically conducting structures formed in the plurality of openings and in contact with a second side of the electrically conducting pad, the contact of the plurality of electrically conducting structures with the electrically conducting pad being offset with respect to the contact of the TSV with the electrically conducting pad.
Abstract:
A solder ball contact and a method of making a solder ball contact includes: a first insulating layer with a via formed on an integrated circuit (IC) chip and a metal pad; an under bump metallurgy (UBM) structure disposed within the via and on a portion of the first insulating layer, surrounding the via; a second insulating layer formed on an upper surface of an outer portion of the UBM structure that is centered on the via; and a solder ball that fills the via and is disposed above an upper surface of an inner portion of the UBM structure that contacts the via, in which the UBM structure that underlies the solder ball is of a greater diameter than the solder ball.
Abstract:
A semiconductor structure which includes a plurality of stacked semiconductor chips in a three dimensional configuration. There is a first semiconductor chip in contact with a second semiconductor chip. The first semiconductor chip includes a through silicon via (TSV) extending through the first semiconductor chip; an electrically conducting pad at a surface of the first semiconductor chip, the TSV terminating in contact at a first side of the electrically conducting pad; a passivation layer covering the electrically conducting pad, the passivation layer having a plurality of openings; and a plurality of electrically conducting structures formed in the plurality of openings and in contact with a second side of the electrically conducting pad, the contact of the plurality of electrically conducting structures with the electrically conducting pad being offset with respect to the contact of the TSV with the electrically conducting pad.
Abstract:
A lead free solder hierarchy structure for electronic packaging that includes organic interposers. The assembly may also contain passive components as well as underfill material. The lead free solder hierarchy also provides a lead free solder solution for the attachment of a heat sink to the circuit chip with a suitable lead free solder alloy.
Abstract:
A temporary attach article of a first component to a second component which includes a first component having a first volume of a fusible material; a second component having a second volume of fusible material; and the first and second components being joined together through the first and second volumes of fusible material, wherein the first volume of fusible material has a melting point higher than a melting point of the second volume of fusible material so that the first and second components may be joined together without melting of the first volume of fusible material and wherein the second volume of fusible material is 5 to 20% of the first volume of fusible material. Also disclosed is a method for temporary attach of devices to an electronic substrate.
Abstract:
A coaxial connector having a conductive copper wire core plated with a layer of gold with the layer of gold surrounded by a dielectric layer, such as polyimide. The layer of polyimide is surrounded by a conductive shielding layer, such as copper, with a tin-plated layer surrounding it. Connection of the coaxial connector at one end to adjacent signal and ground pads is achieved by laser ablation to expose a section of gold sufficient to accommodate the terminal pad pitch and allow wire bonding to the signal pad. Connection of the conductive shielding layer to the ground pad is achieved by hot tip soldering. Connection at the opposite end of the coaxial connector uses the same process.