Abstract:
An inductor embedded in a printed wiring board includes a conductor extending in the thickness direction of a printed circuit board and a magnetic body that is in contact with the conductor with no gap therebetween. For example, the magnetic body is composed of ferrite having a cylindrical tubular shape. The conductor is composed of a copper film formed by plating on an inner peripheral surface of the cylindrical tubular ferrite. The inductor is inserted in the thickness direction of the printed wiring board.
Abstract:
The present invention is to provide a printed wiring board in which malconnection or disconnection caused by a difference between coefficients of thermal expansion of a semiconductor chip and a printed wiring board can be decreased even when a highly-integrated semiconductor apparatus is mounted thereon and an electronic device using the same. An electronic device (4) according to the present invention includes a printed wiring board (1) with a component mounting pin (18) and a surface-mounting type semiconductor apparatus (2) with an electrode pad (3), wherein the component mounting pin (18) has elasticity and is urged against the electrode pad (3) to maintain electric connection.
Abstract:
An inductor embedded in a printed wiring board includes a conductor extending in the thickness direction of a printed circuit board and a magnetic body that is in contact with the conductor with no gap therebetween. For example, the magnetic body is composed of ferrite having a cylindrical tubular shape. The conductor is composed of a copper film formed by plating on an inner peripheral surface of the cylindrical tubular ferrite. The inductor is inserted in the thickness direction of the printed wiring board.
Abstract:
A multilayer printed wiring board 10 includes: a core substrate 20; a build-up layer 30 formed on the core substrate 20 and having a conductor pattern 32 on an upper surface; a low elastic modulus layer 40 formed on the build-up layer 30; lands 52 that are disposed on an upper surface of the low elastic modulus layer 40 and connected via solder bumps 66 to a semiconductor chip 70; and conductor posts 50 that are passing through the low elastic modulus layer 40 and electrically connecting lands 52 with conductor patterns 32. The conductor posts 50 are formed to have the diameters of an upper portion and a lower portion of 80 μm, the diameter of an intermediate portion of 35 μm, the height of 200 μm, and the aspect ratio Rasp (height/minimum diameter) of 5.7 and the maximum diameter/minimum diameter of 2.3.
Abstract:
A semiconductor chip mounting wiring board 2 includes an insulating resin substrate 5, a first conductive bump 12 formed on one side of the insulative resin substrate 5 to mount a semiconductor chip 3, a wiring pattern 15 extending from the first conductive bump 12 toward the periphery of the insulating resin substrate 5, a filled viahole 9 leading from the other side of the insulating resin substrate 5 to the wiring pattern 15, and a second conductive bump 13, or a conductive pad 19, positioned just above the filled viahole 9 and electrically connected to the viahole 9. A semiconductor module is produced by mounting the semiconductor chip 3 in advance on the first conductive bump 12 on the semiconductor chip mounting wiring board 2 and stacking a plurality of the wiring boards 2 and interlayer members 20 each having an opening 27 to receive the semiconductor chip 3 and a conductive post 26 or conductive pad connected to the second conductive bump 13 of the wiring board 2 alternately on each other with an adhesive applied between them, placing another interconnecting circuit board such as an I/O wiring board 30 or the like on an outermost layer, and by applying hot-pressing to the stack. The semiconductor module thus produced has a high connection reliability and can be designed for a high mounting density and a lower profile.
Abstract:
A circuit wiring board including a wiring substrate, and a heat resistant substrate accommodated in the wiring substrate and including a core substrate and a through hole conductor formed in the core substrate, the core substrate having a first surface and a second surface on an opposite side of the first surface, the through hole conductor providing electrical connection through the core substrate between the first surface and the second surface of the core substrate.
Abstract:
A printed circuit board according to the present invention is a printed circuit board (4) including a component mounting pin (1) made of a metal wire to connect with a semiconductor chip (10). The semiconductor chip (10) is a surface mounting type semiconductor chip having an electrode pad on its mounting surface for use in a flip-chip mounting system. The component mounting pin (1) is formed by using wire-bonding technology. This printed circuit board (4) is able to decrease malconnections or disconnection caused by a difference between the coefficients of thermal expansion of the semiconductor chip (10) and the printed circuit board (4).
Abstract:
A multilayer printed circuit board has an IC chip 20 included in a core substrate 30 in advance and a mediate layer 38 provided on a pad 24 of the IC chip 20. Due to this, it is possible to electronically connect the IC chip to the multilayer printed circuit board without using lead members and a sealing resin. Also, by providing the mediate layer 38 made of copper on the die pad 24, it is possible to prevent resin residues on the pad 24 and to improve connection characteristics between the pad 24 and a via hole 60 and reliability.
Abstract:
In a printed wiring board 10, an upper electrode connecting portion 52 penetrates through a capacitor portion 40 in top to bottom direction so that an upper electrode connecting portion first part 52a is not in contact with the capacitor portion 40, passes through an upper electrode connecting portion third part 52c provided at the upper portion of the capacitor portion 40, and then connects from the upper electrode connecting portion second part 52b to an upper electrode 42. Furthermore, a lower electrode connecting portion 51 penetrates through the capacitor portion 40 in top to bottom direction so that it is not in contact with the upper electrode 42 of the capacitor portion 40, but is in contact with a lower electrode 41. Therefore, the upper electrode connecting portion 52 and the lower electrode connecting portion 51 can be formed even after in process of build-up, the whole surface is covered by a high dielectric capacitor sheet that has a structure that a high dielectric layer is sandwiched between two metal foils and will afterwards serve as the capacitor portion 40.
Abstract:
A semiconductor chip mounting wiring board 2 includes an insulating resin substrate 5, a first conductive bump 12 formed on one side of the insulative resin substrate 5 to mount a semiconductor chip 3, a wiring pattern 15 extending from the first conductive bump 12 toward the periphery of the insulating resin substrate 5, a filled viahole 9 leading from the other side of the insulating resin substrate 5 to the wiring pattern 15, and a second conductive bump 13, or a conductive pad 19, positioned just above the filled viahole 9 and electrically connected to the viahole 9. A semiconductor module is produced by mounting the semiconductor chip 3 in advance on the first conductive bump 12 on the semiconductor chip mounting wiring board 2 and stacking a plurality of the wiring boards 2 and interlayer members 20 each having an opening 27 to receive the semiconductor chip 3 and a conductive post 26 or conductive pad connected to the second conductive bump 13 of the wiring board 2 alternately on each other with an adhesive applied between them, placing another interconnecting circuit board such as an I/O wiring board 30 or the like on an outermost layer, and by applying hot-pressing to the stack. The semiconductor module thus produced has a high connection reliability and can be designed for a high mounting density and a lower profile.