Abstract:
The present invention relates generally to permanent interconnections between electronic devices, such as integrated circuit packages, chips, wafers and printed circuit boards or substrates, or similar electronic devices. More particularly it relates to high-density electronic devices.The invention describes means and methods that can be used to counteract the undesirable effects of thermal cycling, shock and vibrations and severe environment conditions in general.For leaded devices, the leads are oriented to face the thermal center of the devices and the system they interact with.For leadless devices, the mounting elements are treated or prepared to control the migration of solder along the length of the elements, to ensure that those elements retain their desired flexibility.
Abstract:
A microelectronic combination and a method of making the combination. The combination includes a package substrate including a substrate body having a peripheral surface and contacts disposed at the peripheral surface; and a surface mount component electrically and mechanically bonded to the contacts.
Abstract:
An electronic device comprises: a printed wiring board that comprises a substrate, pads formed on the substrate, and an insulating film layer covering a surface of the substrate on which the pads are formed; and an electronic element that comprises external terminals electrically connected to the pads and that is mounted on the printed wiring board. The insulating film layer comprises at least one connecting opening section each exposing at least part of one of the pads. At least part of an inner wall of the connecting opening section comprises at least one step section.
Abstract:
A connection member is disposed between a semiconductor package and a printed wiring board. The connection member includes: a base member formed of an insulating material; a plurality of through-holes provided in the base member at corresponding positions between a plurality of first terminal pads of the semiconductor package and a plurality of second terminal pads of the printed wiring board; and an electronic component inserted in the plurality of through-holes, the electronic component having a first electrode and a second electrode at ends thereof, the first electrode connected to one of the first terminal pads, the second electrode connected to one of the second terminal pads.
Abstract:
A composite interconnect system includes a plurality of carbon nanotubes, a plurality of solder balls and standoff balls disposed on a first device to provide a connection to a second device. A die-attached substrate includes a substrate and one or more die disposed on the substrate by a die-attach composite interconnect. The die-attach composite interconnect includes a plurality of carbon nanotubes, solder bumps, and standoff balls disposed on the die to provide one or more connections to the substrate. A PCB-attached substrate package includes a substrate package and one or more die disposed on the substrate package. The substrate package is disposed on a PCB by a PCB-attach composite interconnect. The PCB-attach composite interconnect includes a plurality of carbon nanotubes, solder balls, and standoff balls disposed on the substrate package to provide one or more connections to the PCB.
Abstract:
A system for prototyping electrical circuits, as well as creating production circuits, without using solder. Stand-in electrical components 110a are placed on a carrier 100a and scanned 310. From the resulting data, a machine tool or laser ablation system 410 then creates a negative master 420a with aperture(s) 530 into which production components 810 are placed and secured. Component leads 820 or packages are encapsulated with electrically insulating material 910 with vias 1030a exposing the leads. Traces 1040 connect appropriate leads forming a circuit sub-assembly 1000 which can serve as a basis for a circuit assembly formed through a reverse-interconnection process.
Abstract:
A composite interconnect system includes a plurality of carbon nanotubes, a plurality of solder balls and standoff balls disposed on a first device to provide a connection to a second device. A die-attached substrate includes a substrate and one or more die disposed on the substrate by a die-attach composite interconnect. The die-attach composite interconnect includes a plurality of carbon nanotubes, solder bumps, and standoff balls disposed on the die to provide one or more connections to the substrate. A PCB-attached substrate package includes a substrate package and one or more die disposed on the substrate package. The substrate package is disposed on a PCB by a PCB-attach composite interconnect. The PCB-attach composite interconnect includes a plurality of carbon nanotubes, solder balls, and standoff balls disposed on the substrate package to provide one or more connections to the PCB.
Abstract:
A method and apparatus for attaching a module such as a semiconductor device, having an array of contacts arranged thereon in a given pattern to a substrate such as a printed circuit board comprises applying an array of solder blocks to the array of contacts on the module. The module is then positioned on the substrate so that the array of solder blocks contacts the array of contact pads on the substrate. Heat is then applied to reflow the solder blocks to provide mechanical and electrical connection of the module to the substrate.
Abstract:
An electrical contact assembly includes a first module (21a, 21b, 22) having a first set of electrical contacts, a second module (10) having a second set of electrical contacts, a shape generating module (32, 34, 36), and a clamping arrangement (24, 25, 26, 27, 28, 29) for clamping the first, second and shape generating modules together. The shape generating module (32, 34, 36) imparts a desired shape to the second module (10) for urging the second set of electrical contacts toward the first set of electrical contacts, such that clamping the modules together results in a positive contact force between the first and second sets of electrical contacts that is substantially uniform across the sets of electrical contacts. The shape generating module includes a first insulating layer (34), a second insulating layer (32) and a shape producing layer (36) disposed between the first and second insulating layers. The shape producing layer (36) includes an adhesive that flows and cures upon application of a heat treatment to produce the desired shape.