Abstract:
Wafers include multiple bulk redistribution layers. A terminal contact pad is on a surface of one of the bulk redistribution layers. A final redistribution layer is formed on the surface and in contact with the terminal contact pad. The final redistribution layer is formed from a material other than a material of the plurality of bulk redistribution layers. A solder ball is formed on the terminal contact pad.
Abstract:
A bonding wire and a method of manufacturing the bonding wire are provided. The bonding wire contains 90.0 to 99.0 wt % of silver (Ag); 0.2 to 2.0 wt % of gold (Au); 0.2 to 4.0 wt % of palladium (Pd), platinum (Pt), rhodium (Rh), or a combination thereof; 10 to 1000 ppm of dopants; and inevitable impurities. In the wire, the ratio of (a)/(b) is 3 to 5, in which (a) represents the amount of crystal grains having orientation in crystalline orientations in a wire lengthwise direction and (b) represents the amount of crystal grains having orientation in crystalline orientations in the wire lengthwise direction.
Abstract:
A process for manufacturing a bonding wire containing a core having a surface. The core contains ≧98.0% copper and has a cross sectional area of 75,00 to 600,000 μm2 and an elastic limit RP0.2 (yield strength) of 40 to 95 N/mm2. The process involves (a) providing a copper core precursor; (b) drawing the precursor until a final diameter of the wire core is reached; and (c) annealing the drawn wire at a minimum annealing temperature of 650 to 1000° C. through its entire cross section for a minimum annealing time of 4 seconds to 2 hours.
Abstract:
A semiconductor device of the present invention includes a semiconductor element, a surface electrode formed on a surface of the semiconductor element, a metal film formed on the surface electrode so as to have a joining portion and a stress relieving portion formed so as to border on and surround the joining portion, solder joined to the joining portion while avoiding the stress relieving portion, and an external electrode joined to the joining portion through the solder.
Abstract:
Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 μm2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 10% to less than 50%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 70% or more. During the drawing step, a drawing operation with a rate of reduction of area of 15.5% or more is performed at least once. The final heat treatment temperature and the pre-final heat treatment temperature are made predetermined ranges.
Abstract:
A first bond portion is formed on a first electrode, and for a wire extended from the first bond portion, a tip of a capillary is pressed against a bump formed on a second electrode, to form a second bond portion to which a shape of a pressing surface at the tip of the capillary is transferred. A base end of the second bond portion from which the wire starts becoming thinner is located on the inside of the bump from an end of a bonding surface by 10% or more of the length of the bonding surface, and the wire is cut with the capillary.
Abstract:
A module includes a semiconductor chip having at least a first terminal contact surface and a second terminal contact surface. A first bond element made of a material on the basis of Cu is attached to the first terminal contact surface, and a second bond element is attached to the second terminal contact surface. The second bond element is made of a material different from the material of the first bond element or is made of a type of bond element different from the type of the first bond element.
Abstract:
A semiconductor device of the present invention includes a semiconductor element, a surface electrode formed on a surface of the semiconductor element, a metal film formed on the surface electrode so as to have a joining portion and a stress relieving portion formed so as to border on and surround the joining portion, solder joined to the joining portion while avoiding the stress relieving portion, and an external electrode joined to the joining portion through the solder.
Abstract:
A ribbon, preferably a bonding ribbon for bonding in microelectronics, contains a first layer containing copper, a coating layer containing aluminum superimposed over the first layer, and an intermediate layer. In a cross-sectional view of the ribbon, the area share of the first layer is from 50 to 96% and the aspect ratio between the width and the height of the ribbon in a cross-sectional view is from 0.03 to less than 0.8. The ribbon has a cross-sectional area of 25,000 μm2 to 800,000 μm2. The intermediate layer contains at least one intermetallic phase containing materials of the first and coating layers. The invention further relates to a process for making a wire, to a wire obtained by the process, to an electric device containing the wire, to a propelled device comprising said electric device and to a process of connecting two elements through the wire by wedge-bonding.
Abstract:
The present invention relates to a method of bonding a copper wire to a substrate, particularly a printed circuit board and an IC-substrate, possessing a layer assembly comprising a copper bonding portion and a palladium or palladium alloy layer and a substrate having a copper wire bonded to aforementioned layer assembly.