Abstract:
A Quadrax to Twinax conversion apparatus includes stacked trace layers of transmission line with a ground plane between the trace layers. Embodiments include trace layers of stripline or microstrip. Orthogonal plated through holes include a diagonal pair of through holes in electrical contact with traces on one of the trace layers and another diagonal pair of through holes in electrical contact with another trace layer. Contact pins extend through these orthogonal plated through holes with one pair of pins making electrical contact with one trace layer and the other pair of pins making electrical contact with another trace layer. The conversion apparatus electrically connects Twinax cables to respectively different trace layers without crossing over or disturbing the relative positions of the Quadrax diagonal pairs for very efficient high-speed data transfer from four wire Quadrax to two wire Twinax cables.
Abstract:
A high-speed router backplane, and method for its fabrication, are disclosed. The backplane uses differential signaling trace pairs on multiple high-speed signaling layers, the high-speed signaling layers separated by ground planes. Plated signaling thru-holes connect the trace pairs to the board surface for connection to external components. The signaling thru-holes pass through clearances in each ground plane. At selected ground planes, a conductive pad is patterned within each high-speed signaling thru-hole clearance, the pad slightly larger than the thru-hole diameter. The pads affect the impedance characteristics of the thru-holes, thus providing a better impedance match to the differential trace pairs, reducing signal reflections, and improving the ability to signal across the backplane at high speeds.
Abstract:
A circuit board including a conductive plane, a first via and a second via. The first and second vias extend through the conductive plane such that there is no conductive material between the first and second vias within the conductive plane.
Abstract:
A high-speed router backplane, and method for its fabrication, are disclosed. The backplane uses differential signaling trace pairs on multiple high-speed signaling layers, the high-speed signaling layers separated by ground planes. Plated signaling thru-holes connect the trace pairs to the board surface for connection to external components. The signaling thru-holes pass through clearances in each ground plane. At selected ground planes, a conductive pad is patterned within each high-speed signaling thru-hole clearance, the pad slightly larger than the thru-hole diameter. The pads affect the impedance characteristics of the thru-holes, thus providing a better impedance match to the differential trace pairs, reducing signal reflections, and improving the ability to signal across the backplane at high speeds.
Abstract:
The disclosed board fabrication techniques and design features enable the construction of a reliable, high-layer-count, and economical backplane for routers and the like that require a large number of signaling paths across the backplane at speeds of 2.5 Gbps or greater, as well as distribution of significant amounts of power to router components. The disclosed techniques and features allow relatively thick (e.g., three- or four-ounce copper) power distribution planes to be combined with large numbers of high-speed signaling layers in a common backplane. Using traditional techniques, such a construction would not be possible because of the number of layers required and the thickness of the power distribution layers. The disclosed embodiments use novel layer arrangements, material selection, processing techniques, and panel features to produce the desired high-speed layers and low-noise high-power distribution layers in a single mechanically stable board.
Abstract:
A semiconductor device comprising a substrate including a metal portion and a resin portion and having a plurality of through holes formed in the resin portion, conductive members formed within the through holes, a semiconductor chip attached to one surface of the substrate, and a plurality of solder balls attached to the other surface of the substrate. The semiconductor chip and solder balls are electrically connected through the conductive members.
Abstract:
Structures are described having vias with more than one electrical conductor at least one of which is a solid conductor which is formed by inserting the wire into the via in a substrate wherein the wire is attached to an electrically conductive plate which is spaced apart from the substrate by a spacer which leave a space between the substrate and plate. The space is filled with a dielectric material. The space with via between the conductor and via sidewall is filled with a dielectric material. The via is used for making transformers and inductors wherein one of the via conductors is used for inner windings and another of the via conductors is used for outer windings.
Abstract:
A substrate includes a first dielectric layer having a first surface and a second surface. The first dielectric layer includes a plurality of first conductive vias and a plurality of second conductive vias. These two kinds of conductive vias are formed to penetrate the first dielectric layer and have different orientations for reduce warpage of the substrate.
Abstract:
A signal processing board includes a six-layer substrate. A plurality of signal transmission planes are formed in a first layer, a third layer, a fourth layer, and a sixth layer. A first ground plane is formed in a second layer. A first power supply plane is formed in a fifth layer and electrically connected to the first semiconductor element. A second power supply plane is formed in the fifth layer and electrically connected to the second semiconductor element. A second ground plane is formed in the fifth layer. A first bypass capacitor is electrically connected to the first power supply plane and the second ground plane. A second bypass capacitor is electrically connected to the second power supply plane and the second ground plane.
Abstract:
Substrates with continuous slot vias are disclosed herein. In one embodiment, a substrate comprises a first design layer, a second design layer, and an intermediary layer between the first and second design layers. The substrate further includes first and second signaling vias extending vertically through the intermediary layer between the first and second design layers. The first and second signaling vias route first and second data signals, respectively, between the first and second design layers. The substrate further includes a slot via that is positioned between the first and second signaling vias within the intermediary layer and extends laterally within the intermediary layer along a path that passes between the first signaling via and the second signaling via. The slot via can have a continuous shape such that the slot via shields the first and second data signals on the first and second signaling vias from crosstalk with one another.