摘要:
A light emitting diode (10) has a backside and a front-side with at least one n-type electrode (14) and at least one p-type electrode (12) disposed thereon defining a minimum electrodes separation (delectrodes). A bonding pad layer (50) includes at least one n-type bonding pad (64) and at least one p-type bonding pad (62) defining a minimum bonding pads separation (dpads) that is larger than the minimum electrodes separation (delectrodes). At least one fanning layer (30) interposed between the front-side of the light emitting diode (10) and the bonding pad layer (50) includes a plurality of electrically conductive paths passing through vias (34, 54) of a dielectric layer (32, 52) to provide electrical communication between the at least one n-type electrode (14) and the at least one n-type bonding pad (64) and between the at least one p-type electrode (12) and the at least one p-type bonding pad (62).
摘要:
A lighting apparatus (10) comprises a light engine (12) producing ultra violet radiation. An enclosure (14) surrounds a radiation generating area of the light engine (12) to encompass the radiation. At least one wall (28) of the enclosure (14) is substantially reflective of the ultraviolet radiation. The enclosure (14) includes a replaceable top portion (30) which includes a phosphor portion (32). The phosphor portion (32) is spaced from the radiation generating area of the light engine (12) by a height of the enclosure (14).
摘要:
A light emitting diode (LED) device (A) and processes for its manufacture are provided. The LED device (A) includes a light emitting chip or die (10) and an encapsulant (22) surrounding the same. The encapsulant (22) is substantially spherical in shape, and the die (10) is preferably located at a substantial center of the encapsulant (22). An electrically conductive path extends from the chip or die (10) to a periphery of the encapsulant (22) such that the chip/die (10) can be selectively energized to produce light by applying electricity to the electrically conductive path at the periphery of the encapsulant (22). Preferably, the encapsulant (22) is chosen to have an index of refraction as close as possible to the higher of an index of refraction of the die's semiconductor material and an index of refraction of the die's substrate (12).
摘要:
A light emitting apparatus includes a support having circuitry disposed thereon, at least one light emitting diode (LED) chip mounted on the support and in electrical communication with the circuitry and a reflective layer on the support adjacent the at least one chip.
摘要:
A light emitting package (8, 8′, 8″, 208, 408) includes a printed circuit board (10, 10′, 10″, 210, 410) supporting at least one light emitting die (12, 12″, 14, 16, 212, 412). A light transmissive cover (60, 60′, 60″, 260, 460) is disposed over the at least one light emitting die. The cover has an open end defining a cover perimeter (62, 62′, 62″, 262, 462) connected with the printed circuit board. An inside surface of the cover together with the printed circuit board defines an interior volume (70, 70″, 270, 470) containing the at least one light emitting die. An encapsulant (76, 76″, 276, 278, 476) is disposed in the interior volume and covers at least the light emitting die.
摘要:
In fabricating wafer scale integrated interconnects, a temporary or permanent dielectric layer and a pattern of electrical conductors are used to provide wafer scale integration or testing and burn-in. A resist can be used to cover the areas of IC pads on the wafer while the remainder of the pattern of electrical conductors is removed to provide for repair of the wafer scale integration structure. The pattern of electrical conductors may be configured so that the conductor lengths between at least some sub-circuits on a plurality of wafers are substantially electrically equal for signal propagation purposes; an additional wafer may be laminated to the wafer using an adhesive; controlled curfs may be cut into the wafer; and the wafer may be interconnected to an interface ring.
摘要:
A light source (10) comprises a light engine (16), a base (24), a power conversion circuit (30) and an enclosure (22). The light engine (16) comprises at least one LED (12) disposed on a platform (14). The platform (14) is adapted to directly mate with the base (24) which a standard incandescent bulb light base. Phosphor (44) receives the light generated by the at least one LED (12) and converts it to visible light. The enclosure (22) has a shape of a standard incandescent lamp.
摘要:
A light module includes a light emitting diode assembly defining a front side light emitting diode array and a rear side. The rear side is in thermal communication with a thermally conductive spreader, and a thermally conductive core is in thermal communication with the conductive spreader. The thermally conductive core includes an electrical conductor in operative communication with the front side light emitting diode array, and a plurality of appendages disposed about the thermally conductive core such that they are in thermal communication with the conductive spreader.
摘要:
A high density interconnect structure incorporating a plurality of laminated dielectric layers is fabricated using a SPI/epoxy crosslinking copolymer blend adhesive in order to maintain the stability of the already fabricated structure during the addition of the later laminations while also maintaining the repairability of the high density interconnect structure.
摘要:
A directional lamp comprises a light source, a beam forming optical system configured to form light from the light source into a light beam, and a light mixing diffuser arranged to diffuse the light beam. The light source, beam forming optical system, and light mixing diffuser are secured together as a unitary lamp. The beam forming optical system includes: a collecting reflector having an entrance aperture receiving light from the light source and an exit aperture that is larger than the entrance aperture, and a lens disposed at the exit aperture of the collecting reflector, the light source being positioned along an optical axis of the beam forming optical system at a distance from the lens that is within plus or minus ten percent of a focal length of the lens.