Abstract:
A method and apparatus providing a lens master device and use of the same to form a lens template and/or a lens structure. The method includes obtaining a plurality of individual lens masters, each of which has a shaped portion defining at least a portion of a lens structure to be formed. The lens masters are affixed onto a supporting structure to form a lens master device.
Abstract:
A method for fabricating a semiconductor component with a through wire interconnect includes the step of providing a substrate having a circuit side, a back side, and a through via. The method also includes the steps of: threading a wire through the via, forming a contact on the wire on the back side, forming a bonded contact on the wire on the circuit side, and then severing the wire from the bonded contact. The through wire interconnect includes the wire in the via, the contact on the back side and the bonded contact on the circuit side. The contact on the back side, and the bonded contact on the circuit side, permit multiple components to be stacked with electrical connections between adjacent components. A system for performing the method includes the substrate with the via, and a wire bonder having a bonding capillary configured to thread the wire through the via, and form the contact and the bonded contact. The semiconductor component can be used to form chip scale components, wafer scale components, stacked components, or interconnect components for electrically engaging or testing other semiconductor components.
Abstract:
A method for fabricating a semiconductor component with through interconnects can include the steps of providing a semiconductor substrate with substrate contacts, and forming openings from a backside of the substrate aligned with the substrate contacts. The method can also include the steps of providing an interposer substrate (or alternately a second semiconductor substrate), forming projections on the interposer substrate (or on the second semiconductor substrate), and forming conductive vias in the projections. The method can also include the steps of placing the projections in physical contact with the openings, and placing the conductive vias in electrical contact with the substrate contacts. The method can also include the steps of bonding the conductive vias to the substrate contacts, and forming terminal contacts on the interposer substrate (or alternately on one of the semiconductor substrates) in electrical communication with the conductive vias.
Abstract:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
Abstract:
An apparatus and method for providing external electrostatic discharge (ESD) protection to a semiconductor device, which may or may not include its own ESD protection, are provided. An ESD structure may be associated with each interconnect, either individually or shared between two or more interconnects. Each interconnect includes a contact tip for establishing a temporary electrical connection with a bond pad of the semiconductor device and a contact pad for electrically interfacing the bond pad with external burn-in and/or test equipment. The ESD structure may be implemented, for example, as a fusible element or a shunting element, such as a pair of diodes, a diode-resistor network, or a pair of transistors. The interconnect may be employed as part of an insert including a plurality of interconnects that provides ESD protection to a plurality of integrated circuits of at least one semiconductor device.
Abstract:
A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) attached to the substrate contact. The through wire interconnect provides a multi level interconnect having contacts on opposing first and second sides of the semiconductor substrate. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via having a bonded connection with the substrate contact, a first contact on the wire proximate to the first side, and a second contact on the wire proximate to the second side. The through wire interconnect (TWI) also includes a polymer layer which partially encapsulates the through wire interconnect (TWI) while leaving the first contact exposed. The semiconductor component can be used to fabricate stacked systems, module systems and test systems. A method for fabricating the semiconductor component can include a film assisted molding process for forming the polymer layer.
Abstract:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
Abstract:
A method for fabricating a semiconductor component includes the steps of providing a substrate having a contact on a circuit side thereof, forming an opening from a backside of the substrate to the contact, forming a conductive via in the opening in electrical contact with a surface of the contact, and forming a second contact on the back side in electrical communication with the conductive via. The method can also include the steps of thinning the substrate from the backside, forming insulating layers on the circuit side and the backside, and forming a conductor and terminal contact on the circuit side in electrical communication with the conductive via. A semiconductor component includes the contact on the circuit side, the conductive via in electrical contact with the contact, and the second contact on the backside in electrical communication with the conductive via. The semiconductor component can also include the insulating layers, the conductor and the terminal contact.
Abstract:
A saw for dicing substrates, such as semiconductor wafers, that has one or more variable indexing capabilities and two or more blades. One of the blades may be moved laterally or vertically, independent of one or more other blades.
Abstract:
Microelectronic devices, methods for packaging microelectronic devices, and methods for forming interconnects in microelectronic devices are disclosed herein. In one embodiment, a method comprises providing a microelectronic substrate having a front side and a backside. The substrate has a microelectronic die including an integrated circuit and a terminal operatively coupled to the integrated circuit. The method also includes forming a passage at least partially through the substrate and having an opening at the front side and/or backside of the substrate. The method further includes sealing the opening with a conductive cap that closes one end of the passage while another end of the passage remains open. The method then includes filling the passage with a conductive material.