Abstract:
A semiconductor chip scale package formed with through-vias, which can be either isolated or electrically connected to a substrate, and a method of producing the semiconductor chip scale package with through-vias, which can be isolated or electrically connected to the substrate.
Abstract:
A chip-in-slot interconnect for three-dimensional semiconductor chip stacks, and particularly having the ability of forming edge connections on semiconductor chips, wherein the semiconductor chips are mounted in one or more chip carriers which are capable of being equipped with embedded circuitry. Moreover, provision is made for unique methods for producing the edge connections on the semiconductor chips, for creating a semiconductor chip carrier, and for producing a novel semiconductor and combined chip carrier structure.
Abstract:
A sealed microelectronic structure which provides mechanical stress endurance and includes at least two chips being electrically connected to a semiconductor structure at a plurality of locations. Each chip includes a continuous bonding material along it's perimeter and at least one support column connected to each of the chips positioned within the perimeter of each chip. Each support column extends outwardly such that when the at least two chips are positioned over one another the support columns are in mating relation to each other. A seal between the at least two chips results from the overlapping relation of the chip to one another such that the bonding material and support columns are in mating relation to each other. Thus, the seal is formed when the at least two chips are mated together, and results in a bonded chip structure.
Abstract:
An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
Abstract:
Disclosed is an electronic device comprising a semiconductor chip including an integrated circuit having at least one electrostatic discharge sensitive device and a non-semiconductor chip, positioned in close proximity to the semiconductor chip, the non-semiconductor chip having at least one electrostatic discharge protection device. The electrostatic discharge protection device is electrically connected to the electrostatic discharge sensitive device.
Abstract:
A coil inductor and buck voltage regulator incorporating the coil inductor are provided which can be fabricated on a microelectronic element such as a semiconductor chip, or on an interconnection element such as a semiconductor, glass or ceramic interposer element. When energized, the coil inductor has magnetic flux extending in a direction parallel to first and second opposed surfaces of the microelectronic or interconnection element, and whose peak magnetic flux is disposed between the first and second surfaces. In one example, the coil inductor can be formed by first conductive lines extending along the first surface of the microelectronic or interconnection element, second conductive lines extending along the second surface of the microelectronic or interconnection element, and a plurality of conductive vias, e.g., through silicon vias, extending in direction of a thickness of the microelectronic or interconnection element. A method of making the coil inductor is also provided.
Abstract:
A method includes receiving at least one wafer having a front side and a backside, where the front side has a plurality of integrated circuit chips thereon. The backside of the wafer is thinned, a pattern of material is removed from the backside of the wafer to form a plurality of dicing trenches. Each of the dicing trenches are positioned opposite a location on the front side of the wafer that corresponds to edges of each of the plurality of chips. The dicing trenches are filled with a filler material and a dicing support is attached to a front side of the wafer. The filler material is removed from the dicing trenches, and a force is applied to the dicing support to separate each of the plurality of chips on the wafer from each other along the dicing trenches.
Abstract:
A back of a dielectric transparent handle substrate is coated with a blanket conductive film or a mesh of conductive wires. A semiconductor substrate is attached to the transparent handle substrate employing an adhesive layer. The semiconductor substrate is thinned in the bonded structure to form a stack of the transparent handle substrate and the semiconductor interposer. The thinned bonded structure may be loaded into a processing chamber and electrostatically chucked employing the blanket conductive film or the mesh of conductive wires. The semiconductor interposer may be bonded to a semiconductor chip or a packaging substrate employing C4 bonding or intermetallic alloy bonding. Illumination of ultraviolet radiation to the adhesive layer is enabled, for example, by removal of the blanket conductive film or through the mesh so that the transparent handle substrate may be detached. The semiconductor interposer may then be bonded to a packaging substrate or a semiconductor chip.
Abstract:
A method of cooling a resistor is provided. The method includes forming a first electrical insulator having a high thermal conductivity in thermal contact with an electrically resistive pathway and forming a substrate adjacent the electrical insulator. The method further includes forming a first electrical conductor having a high thermal conductivity within the second substrate and in thermal contact with the electrical insulator.
Abstract:
A voltage regulator module (VRM) includes a first interface configured to couple to a first substrate interface at a first voltage. The VRM also includes a second interface configured to couple to a first processor interface at a second voltage. A first regulator module couples to the first interface and to the second interface. The first regulator module is configured to receive power at the first interface, to convert power to the second voltage, and to deliver power to the first processor interface at the second voltage. A method for providing power to a processor includes receiving power from a first substrate interface at a first voltage. The received power is regulated to generate power at a second voltage. The regulated power is provided to a processor at a first processor interface coupled to the processor. The processor interface delivers power to a logic group of a plurality of logic groups of the processor.