Abstract:
A semiconductor device is made by providing a sacrificial substrate and depositing an adhesive layer over the sacrificial substrate. A first conductive layer is formed over the adhesive layer. A polymer pillar is formed over the first conductive layer. A second conductive layer is formed over the polymer pillar to create a conductive pillar with inner polymer core. A semiconductor die or component is mounted over the substrate. An encapsulant is deposited over the semiconductor die or component and around the conductive pillar. A first interconnect structure is formed over a first side of the encapsulant. The first interconnect structure is electrically connected to the conductive pillar. The sacrificial substrate and adhesive layers are removed. A second interconnect structure is formed over a second side of the encapsulant opposite the first interconnect structure. The second interconnect structure is electrically connected to the conductive pillar.
Abstract:
A method of manufacture of an integrated circuit packaging system includes: providing a terminal having a top with a depression; applying a dielectric material in the depression, the dielectric material having a gap formed therein and exposing a portion of the top therefrom; forming a trace within the gap and in direct contact with the top, the trace extending laterally over an upper surface of the dielectric material; and connecting an integrated circuit to the terminal through the trace.
Abstract:
A semiconductor wafer has a plurality of semiconductor die separated by a peripheral region. A trench is formed in the peripheral region of the wafer. A via is formed on the die. The trench extends to and is continuous with the via. A first conductive layer is deposited in the trench and via to form conductive TSV. The first conductive layer is conformally applied or completely fills the trench and via. The trench has a larger area than the vias which accelerates formation of the first conductive layer. A second conductive layer is deposited over a front surface of the die. The second conductive layer is electrically connected to the first conductive layer. The first and second conductive layers can be formed simultaneously. A portion of a back surface of the wafer is removed to expose the first conductive layer. The die can be stacked and electrically interconnected through the TSVs.
Abstract:
A semiconductor device has a semiconductor die with a die bump pad and substrate with a trace line and integrated bump pad. Conductive bump material is deposited on the substrate bump pad or die bump pad. The semiconductor die is mounted over the substrate so that the bump material is disposed between the die bump pad and substrate bump pad. The bump material is reflowed without a solder mask around the die bump pad or substrate bump pad to form an interconnect. The bump material is self-confined within a footprint of the die bump pad or substrate bump pad. The bump material can be immersed in a flux solution prior to reflow to increase wettability. Alternatively, the interconnect includes a non-fusible base and fusible cap. The volume of bump material is selected so that a surface tension maintains self-confinement of the bump material within the bump pads during reflow.
Abstract:
A method of manufacture of an integrated circuit packaging system includes: providing an array of leads having a jumper lead and a covered contact; coupling an insulated bonding wire between the jumper lead and the covered contact; attaching an integrated circuit die over the covered contact; and coupling a bond wire between the integrated circuit die and the jumper lead including coupling the integrated circuit die to the covered contact through the insulated bonding wire.
Abstract:
A method of manufacture of an integrated circuit packaging system includes providing a substrate; connecting an integrated circuit die; forming a molding having a temperature-dependent characteristic directly on the top surface of the substrate; and forming a coupling encapsulation having a coupled characteristic different from the temperature-dependent characteristic directly on the molding forms an encapsulation boundary between the coupling encapsulation and the molding.
Abstract:
An integrated circuit package system includes: forming a base stacking package including: fabricating a base substrate, mounting an integrated circuit on the base substrate, positioning an input/output expansion substrate, having access ports around an inner array area, over the integrated circuit, and injecting a molding compound on the base substrate, the integrated circuit, and the input/output expansion substrate; and mounting a top package on the input/output expansion substrate.
Abstract:
In a semiconductor package, a substrate has an active surface containing a plurality of active circuits. An adhesive layer is formed over the active surface of the substrate, and a known good unit (KGU) is mounted to the adhesive layer. An interconnect structure electrically connects the KGU and active circuits on the substrate. The interconnect structure includes a wire bond between a contact pad on the substrate and a contact pad on the KGU, a redistribution layer on a back surface of the substrate, opposite the active surface, a through hole via (THV) through the substrate that electrically connects the redistribution layer and wire bond, and solder bumps formed in electrical contact with the redistribution layer. The KGU includes a KGU substrate for supporting the KGU, a semiconductor die disposed over the KGU substrate, and an encapsulant formed over the semiconductor die.
Abstract:
An embedded semiconductor die package is made by mounting a frame carrier to a temporary carrier with an adhesive. The frame carrier includes die mounting sites each including a leadframe interconnect structure around a cavity. A semiconductor die is disposed in each cavity. An encapsulant is deposited in the cavity over the die. A package interconnect structure is formed over the leadframe interconnect structure and encapsulant. The package interconnect structure and leadframe interconnect structure are electrically connected to the die. The frame carrier is singulated into individual embedded die packages. The semiconductor die can be vertically stacked or placed side-by-side within the cavity. The embedded die packages can be stacked and electrically interconnected through the leadframe interconnect structure. A semiconductor device can be mounted to the embedded die package and electrically connected to the die through the leadframe interconnect structure.
Abstract:
A method of manufacture of an integrated circuit packaging system includes: providing a wafer substrate having an active side containing a contact; forming a through silicon via extending through the wafer substrate electrically connected to the contact having a via width; forming a first coupling feature extending from a top side of the through silicon via; and forming a second coupling feature on the side of the through silicon via opposite the first coupling feature.