Abstract:
A semiconductor device has a plurality of semiconductor die or components mounted over a carrier. A leadframe is mounted over the carrier between the semiconductor die. The leadframe has a plate and bodies extending from the plate. The bodies of the leadframe are disposed around a perimeter of the semiconductor die. An encapsulant is deposited over the carrier, leadframe, and semiconductor die. A plurality of conductive vias is formed through the encapsulant and electrically connected to the bodies of the leadframe and contact pads on the semiconductor die. An interconnect structure is formed over the encapsulant and electrically connected to the conductive vias. A first channel is formed through the interconnect structure, encapsulant, leadframe, and partially through the carrier. The carrier is removed to singulate the semiconductor die. A second channel is formed through the plate of the leadframe to physically separate the bodies of the leadframe.
Abstract:
A semiconductor device has a plurality of semiconductor die. A substrate is provided with bumps disposed over the substrate. A first prefabricated insulating film is disposed between the semiconductor die and substrate. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The bumps include a copper core encapsulated within copper plating. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The substrate includes a conductive layer formed in the substrate and coupled to the bumps. The semiconductor die is disposed between the bumps of the substrate. The bumps and the semiconductor die are embedded within the first prefabricated insulating film. A portion of the first prefabricated insulating film is removed to expose the bumps. The bumps electrically connect the substrate to the interconnect structure.
Abstract:
Methods of forming conductive jumper traces for semiconductor devices and packages. Substrate is provided having first, second and third trace lines formed thereon, where the first trace line is between the second and third trace lines. The first trace line can be isolated with a covering layer. A conductive layer can be formed between the second and third trace lines and over the first trace line by a depositing process followed by a heating process to alter the chemical properties of the conductive layer. The resulting conductive layer is able to conform to the covering layer and serve to provide electrical connection between the second and third trace lines.
Abstract:
A semiconductor device has an interposer frame mounted over a carrier. A semiconductor die has an active surface and bumps formed over the active surface. The semiconductor die can be mounted within a die opening of the interposer frame or over the interposer frame. Stacked semiconductor die can also be mounted within the die opening of the interposer frame or over the interposer frame. Bond wires or bumps are formed between the semiconductor die and interposer frame. An encapsulant is deposited over the interposer frame and semiconductor die. An interconnect structure is formed over the encapsulant and bumps of the first semiconductor die. An electronic component, such as a discrete passive device, semiconductor die, or stacked semiconductor die, is mounted over the semiconductor die and interposer frame. The electronic component has an I/O count less than an I/O count of the semiconductor die.
Abstract:
Methods of forming conductive jumper traces for semiconductor devices and packages. Substrate is provided having first, second and third trace lines formed thereon, where the first trace line is between the second and third trace lines. The first trace line can be isolated with a covering layer. A conductive layer can be formed between the second and third trace lines and over the first trace line by a depositing process followed by a heating process to alter the chemical properties of the conductive layer. The resulting conductive layer is able to conform to the covering layer and serve to provide electrical connection between the second and third trace lines.
Abstract:
A semiconductor device has a plurality of semiconductor die. A substrate is provided with bumps disposed over the substrate. A first prefabricated insulating film is disposed between the semiconductor die and substrate. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The bumps include a copper core encapsulated within copper plating. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The substrate includes a conductive layer formed in the substrate and coupled to the bumps. The semiconductor die is disposed between the bumps of the substrate. The bumps and the semiconductor die are embedded within the first prefabricated insulating film. A portion of the first prefabricated insulating film is removed to expose the bumps. The bumps electrically connect the substrate to the interconnect structure.
Abstract:
A semiconductor device has a plurality of semiconductor die. A substrate is provided with bumps disposed over the substrate. A first prefabricated insulating film is disposed between the semiconductor die and substrate. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The bumps include a copper core encapsulated within copper plating. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The substrate includes a conductive layer formed in the substrate and coupled to the bumps. The semiconductor die is disposed between the bumps of the substrate. The bumps and the semiconductor die are embedded within the first prefabricated insulating film. A portion of the first prefabricated insulating film is removed to expose the bumps. The bumps electrically connect the substrate to the interconnect structure.
Abstract:
A semiconductor device has a prefabricated multi-die leadframe with a base and integrated raised die paddle and a plurality of bodies extending from the base. A thermal interface layer is formed over a back surface of a semiconductor die or top surface of the raised die paddle. The semiconductor die is mounted over the raised die paddle between the bodies of the leadframe with the TIM disposed between the die and raised die paddle. An encapsulant is deposited over the leadframe and semiconductor die. Vias can be formed in the encapsulant. An interconnect structure is formed over the leadframe, semiconductor die, and encapsulant, including into the vias. The base is removed to separate the bodies from the raised die paddle. The raised die paddle provides heat dissipation for the semiconductor die. The bodies are electrically connected to the interconnect structure. The bodies operate as conductive posts for electrical interconnect.
Abstract:
A semiconductor device has an interposer frame mounted over a carrier. A semiconductor die has an active surface and bumps formed over the active surface. The semiconductor die can be mounted within a die opening of the interposer frame or over the interposer frame. Stacked semiconductor die can also be mounted within the die opening of the interposer frame or over the interposer frame. Bond wires or bumps are formed between the semiconductor die and interposer frame. An encapsulant is deposited over the interposer frame and semiconductor die. An interconnect structure is formed over the encapsulant and bumps of the first semiconductor die. An electronic component, such as a discrete passive device, semiconductor die, or stacked semiconductor die, is mounted over the semiconductor die and interposer frame. The electronic component has an I/O count less than an I/O count of the semiconductor die.
Abstract:
A semiconductor device has an interposer frame mounted over a carrier. A semiconductor die has an active surface and bumps formed over the active surface. The semiconductor die can be mounted within a die opening of the interposer frame or over the interposer frame. Stacked semiconductor die can also be mounted within the die opening of the interposer frame or over the interposer frame. Bond wires or bumps are formed between the semiconductor die and interposer frame. An encapsulant is deposited over the interposer frame and semiconductor die. An interconnect structure is formed over the encapsulant and bumps of the first semiconductor die. An electronic component, such as a discrete passive device, semiconductor die, or stacked semiconductor die, is mounted over the semiconductor die and interposer frame. The electronic component has an I/O count less than an I/O count of the semiconductor die.