Abstract:
A semiconductor device has a first thermally conductive layer formed over a first surface of a semiconductor die. A second surface of the semiconductor die is mounted to a sacrificial carrier. An encapsulant is deposited over the first thermally conductive layer and sacrificial carrier. The encapsulant is planarized to expose the first thermally conductive layer. A first insulating layer is formed over the second surface of the semiconductor die and a first surface of the encapsulant. A portion of the first insulating layer over the second surface of the semiconductor die is removed. A second thermally conductive layer is formed over the second surface of the semiconductor die within the removed portion of the first insulating layer. An electrically conductive layer is formed within the insulating layer around the second thermally conductive layer. A heat sink can be mounted over the first thermally conductive layer.
Abstract:
A semiconductor device can be formed by first providing a semiconductor wafer, and forming a conductive via into the semiconductor wafer. A portion of the semiconductor wafer can be removed so that the conductive via extends above a surface of the semiconductor wafer. A first insulating layer can be formed over the surface of the semiconductor wafer and the conductive via, followed by a second insulating layer, the second insulating layer having a different material composition than the first insulating layer. Portions of the insulating layers can be removed to expose the conductive via.
Abstract:
A semiconductor device has a first build-up interconnect structure formed over a substrate. The first build-up interconnect structure includes an insulating layer and conductive layer formed over the insulating layer. A vertical interconnect structure and semiconductor die are disposed over the first build-up interconnect structure. The semiconductor die, first build-up interconnect structure, and substrate are disposed over a carrier. An encapsulant is deposited over the semiconductor die, first build-up interconnect structure, and substrate. A second build-up interconnect structure is formed over the encapsulant. The second build-up interconnect structure electrically connects to the first build-up interconnect structure through the vertical interconnect structure. The substrate provides structural support and prevents warpage during formation of the first and second build-up interconnect structures. The substrate is removed after forming the second build-up interconnect structure. A portion of the insulating layer is removed exposing the conductive layer for electrical interconnect with subsequently stacked semiconductor devices.
Abstract:
A semiconductor device has an encapsulant deposited over a first surface of the semiconductor die and around the semiconductor die. A first insulating layer is formed over a second surface of the semiconductor die opposite the first surface. A conductive layer is formed over the first insulating layer. An interconnect structure is formed through the encapsulant outside a footprint of the semiconductor die and electrically connected to the conductive layer. The first insulating layer includes an optically transparent or translucent material. The semiconductor die includes a sensor configured to receive an external stimulus passing through the first insulating layer. A second insulating layer is formed over the first surface of the semiconductor die. A conductive via is formed through the first insulating layer outside a footprint of the semiconductor die. A plurality of stacked semiconductor devices is electrically connected through the interconnect structure.
Abstract:
An embedded semiconductor die package is made by mounting a frame carrier to a temporary carrier with an adhesive. The frame carrier includes die mounting sites each including a leadframe interconnect structure around a cavity. A semiconductor die is disposed in each cavity. An encapsulant is deposited in the cavity over the die. A package interconnect structure is formed over the leadframe interconnect structure and encapsulant. The package interconnect structure and leadframe interconnect structure are electrically connected to the die. The frame carrier is singulated into individual embedded die packages. The semiconductor die can be vertically stacked or placed side-by-side within the cavity. The embedded die packages can be stacked and electrically interconnected through the leadframe interconnect structure. A semiconductor device can be mounted to the embedded die package and electrically connected to the die through the leadframe interconnect structure.
Abstract:
A semiconductor device has a stress relief buffer mounted to a temporary substrate in locations designated for bump formation. The stress relief buffer can be a multi-layer composite material such as a first compliant layer, a silicon layer formed over the first compliant layer, and a second compliant layer formed over the silicon layer. A semiconductor die is also mounted to the temporary substrate. The stress relief buffer can be thinner than the semiconductor die. An encapsulant is deposited between the semiconductor die and stress relief buffer. The temporary substrate is removed. An interconnect structure is formed over the semiconductor die, encapsulant, and stress relief buffer. The interconnect structure is electrically connected to the semiconductor die. A stiffener layer can be formed over the stress relief buffer and encapsulant. A circuit layer containing active devices, passive devices, conductive layers, and dielectric layers can be formed within the stress relief buffer.
Abstract:
A semiconductor device has an interconnect structure with a cavity formed partially through the interconnect structure. A first semiconductor die is mounted in the cavity. A first TSV is formed through the first semiconductor die. An adhesive layer is deposited over the interconnect structure and first semiconductor die. A shielding layer is mounted over the first semiconductor die. The shielding layer is secured to the first semiconductor die with the adhesive layer and grounded through the first TSV and interconnect structure to block electromagnetic interference. A second semiconductor die is mounted to the shielding layer and electrically connected to the interconnect structure. A second TSV is formed through the second semiconductor die. An encapsulant is deposited over the shielding layer, second semiconductor die, and interconnect structure. A slot is formed through the shielding layer for the encapsulant to flow into the cavity and cover the first semiconductor die.
Abstract:
A semiconductor device has a substrate. A conductive via is formed through the substrate. A plurality of first contact pads is formed over a first surface of the substrate. A plurality of second contact pads is formed over a second surface of the substrate. A dummy pattern is formed over the second surface of the substrate. An indentation is formed in a sidewall of the substrate. An opening is formed through the substrate. An encapsulant is deposited in the opening. An insulating layer is formed over second surface of the substrate. A dummy opening is formed in the insulating layer. A semiconductor die is disposed adjacent to the substrate. An encapsulant is deposited over the semiconductor die and substrate. The first surface of the substrate includes a width that is greater than a width of the second surface of the substrate.
Abstract:
A semiconductor device includes a substrate having an insulating layer and a conductive layer embedded in the insulating layer. The conductive layer is patterned to form conductive pads or conductive pillars. The substrate includes a first encapsulant formed over the conductive layer. A first opening is formed through insulating layer and first encapsulant using a stamping process or laser direct ablation. The substrate is separated into individual units, which are mounted to a carrier. A semiconductor die is disposed in the first opening in the substrate. A second encapsulant is deposited over the semiconductor die and substrate. An interconnect structure is formed over the semiconductor die and substrate. An opening is formed through the second encapsulant and through the insulating layer to expose the conductive layer. A bump is formed in the second opening over the conductive layer outside a footprint of the semiconductor die.
Abstract:
A band-pass filter has a plurality of frequency band channels each including a first inductor having a first terminal coupled to a first balanced port and a second terminal coupled to a second balanced port. A first capacitor is coupled between the first and second terminals of the first inductor. A second inductor has a first terminal coupled to a first unbalanced port and a second terminal coupled to a second unbalanced port. The second inductor is disposed within a first distance of the first inductor to induce magnetic coupling. A second capacitor is coupled between the first and second terminals of the second inductor. A third inductor is disposed within a second distance of the first inductor and within a third distance of the second inductor to induce magnetic coupling. A second capacitor is coupled between first and second terminals of the third inductor.