Abstract:
A flip chip mounting body in which a circuit substrate having a plurality of connection terminals and an electronic part (semiconductor chip) having a plurality of electrode terminals are aligned face to face with each other, with a resin composition composed of solder powder, a resin and a convection additive being sandwiched in between, while a means such as spacers is interposed in between so as to provide a uniform gap between the two parts, or the electronic part (semiconductor chip) is placed inside a plate-shaped member having two or more protruding portions, so that the solder powder is allowed to move through boiling of the convection additive and to be self-aggregated to form a solder layer, thereby electrically connecting the connection terminals and the electrode terminals; and a mounting method for such a mounting body.
Abstract:
A flexible substrate comprises: (i) a film; (ii) an insulating resin layer formed on each of a front face of the film and a rear face of the film, which rear face is opposite to the front face; (iii) a front-sided wiring pattern embedded in the insulating resin layer formed on the front face of the film, and a rear-sided wiring pattern embedded in the insulating resin layer formed on the rear face of the film; and (iv) a via which is located between the front-sided wiring pattern and the rear-sided wiring pattern and serves to electrically interconnect the front-sided wiring pattern and the rear-sided wiring pattern, wherein the insulating resin layer formed on each of the front face and the rear face of the film is thicker than the film.
Abstract:
A connection member can be produced without a via-forming step. The connection member includes an insulating substrate which has an upper surface, a lower surface opposed to the upper surface, and a side surface which connects these surfaces; and at least one wiring which extends from the upper surface to the lower surface through the side surface.
Abstract:
A connection member can be produced without a via-forming step. The connection member includes an insulating substrate which has an upper surface, a lower surface opposed to the upper surface, and a side surface which connects these surfaces; and at least one wiring which extends from the upper surface to the lower surface through the side surface.
Abstract:
A flexible substrate comprises a film, a first insulating resin layer on a front face of the film, a second insulating resin layer on a rear face of the film, a front-sided wiring pattern embedded in the first insulating resin layer, and a rear-sided wiring pattern embedded in the second insulating resin layer. A surface of the front-sided wiring pattern is flush with a surface of the first insulating resin layer, and a surface of the rear-sided wiring pattern is flush with a surface of the second insulating resin layer. A part of at least one of the front-sided wiring pattern and the rear-sided wiring pattern is dented toward a part of the other of the at least one of the front-sided wiring pattern and the rear-sided wiring pattern such that a portion of the front-sided wiring pattern and a portion of the rear-sided wiring pattern are jointed to each other to form a junction.
Abstract:
A method for fabricating a flexible semiconductor device includes: preparing a layered film 80 including a first metal layer 10, an inorganic insulating layer 20, a semiconductor layer 30, and a second metal layer 40 which are sequentially formed; etching the first metal layer 10 to form a gate electrode 12g; compression bonding a resin layer 50 to a surface of the layered film 80 provided with the gate electrode 12g to allow the gate electrode 12g to be embedded in the resin layer 50; and etching the second metal layer 40 to form a source electrode 42s and a drain electrode 42d, wherein the inorganic insulating layer 20 on the gate electrode 12g functions as a gate insulating film 22, and the semiconductor layer 30 between the source electrode 42s and drain electrode 42d on the inorganic insulating layer 20 functions as a channel 32.
Abstract:
A flexible semiconductor device includes an insulating film on which a semiconductor element is formed. The top and bottom surfaces of the insulating film have a top wiring pattern layer and a bottom wiring pattern layer, respectively. The semiconductor element includes a semiconductor layer formed on the top surface of the insulating film, a source electrode and a drain electrode formed on the top surface of the insulating film so as to contact the semiconductor layer, and a gate electrode formed on the bottom surface of the insulating film so as to be opposite the semiconductor layer. A first thickness, which is the thickness of the insulating film facing the source electrode, the drain electrode, the top wiring pattern layer, and the bottom wiring pattern layer, is greater than a second thickness, which is the thickness of the insulating film between the gate electrode and the semiconductor layer.
Abstract:
A flip chip mounting process wherein a semiconductor chip and a circuit substrate are electrically interconnected. The process includes the steps of preparing a semiconductor chip on which a first plurality of electrodes are formed and a circuit substrate on which a second plurality of electrodes are formed; supplying a composition onto a surface of the circuit substrate, such surface being provided with second plurality of electrodes; bringing the semiconductor chip into contact with a surface of said composition such that the first plurality of electrodes are opposed to the second plurality of electrodes; and heating the circuit substrate, and thereby electrical connections including a metal component constituting the metal particles dispersed in the composition are formed between the first plurality of electrodes and the second plurality of electrodes. Also, a thermoset resin layer is formed between the semiconductor chip and the circuit substrate.
Abstract:
A flip chip mounting method includes holding a circuit board (213) and a semiconductor chip (206), aligning the circuit board (213) with the semiconductor chip (206) while holding them with a predetermined gap therebetween, heating the circuit board (213) or the semiconductor chip (206) to a temperature at which solder powder in a solder resin composition (216) formed of solder powder (214) and a resin (215) is melted, supplying the solder resin composition (216) by a capillary phenomenon, and curing the resin (215), wherein the melted solder powder (214) in the solder resin composition (216) is moved through the predetermined gap across which the circuit board (213) and the semiconductor chip (206) are held, and self-assembled and grown, whereby the connection terminals (211) and the electrode terminals (207) are connected to each other electrically. According to this configuration, a flip chip mounting method having high productivity and reliability, which enables a next generation semiconductor chip to be mounted on a circuit board, a mounted body thereof, and a mounting apparatus thereof are provided.
Abstract:
The flip chip mounted body of the present invention includes: a circuit board (213) having a plurality of connection terminals (211); a semiconductor chip (206) having a plurality of electrode terminals (207) that are disposed opposing the connection terminals (211); and a porous sheet (205) having a box shape that is provided on an opposite side of a formation surface of the electrode terminal (207) of the semiconductor chip (206), is folded on an outer periphery of the semiconductor chip (206) on the formation surface side of the electrode terminal (207) and is in contact with the circuit board (213), wherein the connection terminal (211) of the circuit board (213) and the electrode terminal (207) of the semiconductor chip (206) are connected electrically via a solder layer (215), and the circuit board (213) and the semiconductor chip (206) are fixed by a resin (217). Thereby, the flip chip mounted body with excellent productivity and reliability that can mount the semiconductor chip on the circuit board, and a method and an apparatus for mounting the flip chip mounted body are provided.