摘要:
A high speed interposer which includes a substrate having alternatingly oriented dielectric and conductive layers which form a substrate, openings which extend from one opposing surface of the substrate to a second opposing surface, conductive members positioned within the openings and also extending from surface to surface (and beyond, in some embodiments), and a plurality of shielding members positioned substantially around the conductive members to provide shielding therefore during the passage of high frequency signals through the conductive members.
摘要:
A method of treating a conductive layer to assure enhanced adhesion of the layer to selected dielectric layers used to form a circuitized substrate. The conductive layer includes at least one surface with the appropriate roughness to enable such adhesion and also good signal passage if the layer is used as a signal layer. The method is extendible to the formation of such substrates, including to the formation of multilayered substrates having many conductive and dielectric layers. Such substrates may include one or more electrical components (e.g., semiconductor chips) mounted thereon and may also be mounted themselves onto other substrates.
摘要:
A circuitized substrate and a method of making the circuitized substrate is provided. The circuitized substrate includes a substrate having a substantially planar upper surface and a conductive layer positioned on the substantially planar upper surface. The conductive layer includes at least one side wall therein, defining an opening in the conductive layer. The conductive layer includes an end portion spaced from the opening, the end portion forming an acute angle with the substantially planar upper surface of the substrate. The at least one side wall is substantially perpendicular to the substantially planar upper surface of the substrate.
摘要:
A circuitized substrate and a method of making the circuitized substrate is provided. The circuitized substrate includes a substrate having a substantially planar upper surface and a conductive layer positioned on the substantially planar upper surface. The conductive layer includes at least one side wall therein, defining an opening in the conductive layer. The conductive layer includes an end portion spaced from the opening, the end portion forming an acute angle with the substantially planar upper surface of the substrate. The at least one side wall is substantially perpendicular to the substantially planar upper surface of the substrate.
摘要:
A method for bonding heat sinks to packaged electronic components comprises the steps of: (a) exposing to a plasma a surface of a molded polymer formed on a substrate; (b) allowing the plasma to at least partially convert silicon-containing residue on the surface to silica; and (c) bonding an article to the surface by applying an adherent between the article and the surface. Often, the silicon-containing residue is silicone oil, a mold release compound, which may prevent the formation of a bond when using conventional bonding methods and materials. The silica layer formed on the surface of the molded polymer assists in formation of a proper bond. The plasma may be an oxygen plasma and the adherent may be selected from either a heat cured silicone-based paste adhesive with a metal oxide filler or a heat cured porous polymer film impregnated with adhesive. In particular, the film may be polytetrafluoroethylene, the adhesive may be polybutadine, and the film may be further impregnated with a metal oxide heat transfer medium, such as zinc oxide. An alternate method comprises applying the porous polymer film without plasma treatment and heat curing the film to form a proper bond.
摘要:
A method for bonding heat sinks to packaged electronic components comprises the steps of: (a) exposing to a plasma a surface of a molded polymer formed on a substrate; (b) allowing the plasma to at least partially convert silicon-containing residue on the surface to silica; and (c) bonding an article to the surface by applying an adherent between the article and the surface. Often, the silicon-containing residue is silicone oil, a mold release compound, which may prevent the formation of a bond when using conventional bonding methods and materials. The silica layer formed on the surface of the molded polymer assists in formation of a proper bond. The plasma may be an oxygen plasma and the adherent may be selected from either a heat cured silicone-based paste adhesive with a metal oxide filler or a heat cured porous polymer film impregnated with adhesive. In particular, the film may be polytetrafluoroethylene, the adhesive may be polybutadine, and the film may be further impregnated with a metal oxide heat transfer medium, such as zinc oxide. An alternate method comprises applying the porous polymer film without plasma treatment and heat curing the film to form a proper bond.
摘要:
A method for forming a flip-chip-on-board assembly. An integrated circuit (IC) chip having a polyimide passivation layer is joined to a chip carrier via a plurality of solder bumps which electrically connect a plurality of contact pads on the IC chip to corresponding contacts on the chip carrier. A space is formed between a surface of the passivation layer and a surface of the chip carrier. A plasma is applied, to chemically modify the surface of the chip carrier and the passivation layer of the IC chip substantially without roughening the surface of the passivation layer. The plasma is either an O2 plasma or a microwave-generated Ar and N2O plasma. An underfill encapsulant material is applied to fill the space. The plasma treatment may be performed after the step of joining. Then, the chip and chip carrier are treated with the plasma simultaneously. Alternatively, the IC chip and chip carrier may be treated with the plasma before they are joined to one another. The plasma treatment improves adhesion between the encapsulant and the IC chip, and between the encapsulant and the chip carrier.
摘要:
A method of forming a via in a substrate is provided. The method generally includes laminating a support to the substrate, forming the via in the substrate, and then stripping the support from the substrate. The support is preferably a photoresist that collects any debris generated by the via formation so that the debris is removed from the via and substrate surface as the photoresist support is stripped.
摘要:
A multi-layer electronic circuit package including at least one electrically conductive plane, a first organic polymeric dielectric material having a first optical absorbency to an ablating wavelength of laser light, and a second organic polymeric dielectric material having a second optical absorbency to the ablating wavelength of laser light. The first and second optical absorbencies being different from each other. A first layer of one of the organic polymeric materials overlays at least one surface of the at least one electrically conductive plane and a second layer of a different organic polymeric material with a different optical absorbency to the material in the first layer overlays the first layer.
摘要:
A method for etching a layer of inorganic insulating material formed on a semiconductor wafer and containing silicon as the principal metallic element. The method involves disposing a wafer on one of a pair of electrode structures in a closed chamber. A reactive gas mixture comprising principally a fluorocarbon gas doped with a preselected quantity of carbon dioxide is supplied to the chamber.Radio frequency electrical energy is supplied to one of the electrode structures to create a plasma of the reactive gas mixture for chemically attacking the insulating material.