Abstract:
A printed wiring board includes a mounting portion on which a dual core processor including two processor cores in a single chip can be mounted, power supply lines, ground lines, and a first layered capacitor and a second layered capacitor that are independently provided for each of the processor cores, respectively. Accordingly, even when the electric potentials of the processor cores instantaneously drop, an instantaneous drop of the electric potential can be suppressed by action of the layered capacitors corresponding to the processor cores, respectively. In addition, even when the voltage of one of the processor cores varies, the variation in the voltage does not affect the other processor core, and thus malfunctioning does not occur.
Abstract:
A method of manufacturing a wiring board with a built-in electronic component includes providing a first base material comprising a support body and a first metal foil detachably adhered on the support body, forming a connection terminal for mounting an electronic component on the first metal foil of the first base material by an additive method, electrically connecting an electronic component and the connection terminal by arranging the electronic component on the first base material such that a surface of the electronic component on which a circuit is formed faces a surface on which the connection terminal is formed, covering the electronic component with an insulative material after the mounting, and detaching the support body and the first metal foil.
Abstract:
An inductor embedded in a printed wiring board includes a conductor extending in the thickness direction of a printed circuit board and a magnetic body that is in contact with the conductor with no gap therebetween. For example, the magnetic body is composed of ferrite having a cylindrical tubular shape. The conductor is composed of a copper film formed by plating on an inner peripheral surface of the cylindrical tubular ferrite. The inductor is inserted in the thickness direction of the printed wiring board.
Abstract:
A printed wiring board including a core substrate, a build-up layer formed over the core substrate and including a first insulating layer, a conductor layer formed over the first insulating layer, and a second insulating layer formed over the conductor layer, and one or more wiring patterns formed over the first insulating layer. The conductor layer includes conductor portions, and the conductor portions have notched portions, respectively, facing each other across the wiring pattern.
Abstract:
This invention provides a small package board integrated with power supply capable of supplying a low level of voltage and high level of current to an IC while achieving a low height of its power supply. It becomes hard to saturate an inductor magnetically when the surface of a copper wire is coated with a magnetic layer, and the inductor can accordingly be provided with a sufficient degree of inductance. A multiplicity of inductors can be provided within a confined space by arranging a multiplicity of inductors in parallel, and by fixing them with resin so as to form an inductor array, thereby making it possible to divide a power supply. The number of power supply lines is increased by dividing the power supply so as to reduce the level of current in an individual power supply line, so that a high level of current can be supplied to an IC chip. Further, a distance between a power supply and the IC chip can be decreased by incorporating a power supply module into the package board so as to reduce generation of heat and curb a drop in voltage in the power supply line, thereby making it possible to supply a high level of current to the IC chip.
Abstract:
An inductor embedded in a printed wiring board includes a conductor extending in the thickness direction of a printed circuit board and a magnetic body that is in contact with the conductor with no gap therebetween. For example, the magnetic body is composed of ferrite having a cylindrical tubular shape. The conductor is composed of a copper film formed by plating on an inner peripheral surface of the cylindrical tubular ferrite. The inductor is inserted in the thickness direction of the printed wiring board.
Abstract:
A multilayer printed circuit board has an IC chip 20 included in a core substrate 30 in advance and a transition layer 38 provided on a pad 24 of the IC chip 20. Due to this, it is possible to electronically connect the IC chip to the multilayer printed circuit board without using lead members and a sealing resin. Also, by providing the transition layer 38 made of copper on the die pad 24, it is possible to prevent resin residues on the pad 24 and to improve connection characteristics between the pad 24 and a via hole 60 and reliability.
Abstract:
A multilayer printed wiring board 10 includes: a build-up layer 30 that is formed on a core substrate 20 and has a conductor pattern 32 disposed on an upper surface; a low elastic modulus layer 40 that is formed on the build-up layer 30; lands 52 that are disposed on an upper surface of the low elastic modulus layer 40 and connected via solder bumps 66 to a IC chip 70; and conductor posts 50 that pass through the low elastic modulus layer 40 and electrically connect lands 52 with conductor patterns 32. The conductor posts 50 have the aspect ratio Rasp (height/minimum diameter) of not less than 4 and the minimum diameter exceeding 30 μm, and the aspect ratio Rasp of external conductor posts 50a, which are positioned at external portions of the low elastic modulus layer 40, is greater than or equal to the aspect ratio Rasp of internal conductor posts 50b, which are positioned at internal portions of the low elastic modulus layer 40.
Abstract:
A high-dielectric sheet for a printed circuit board includes a first electrode, a first sputter film formed on the first electrode, an intermediate layer formed on the first sputter film by calcining a sol-gel film, a second sputter film formed on the intermediate layer, and a second electrode provided on the second sputter film.
Abstract:
When a package substrate with a built-in capacitor includes a first thin-film small electrode 41aa and a second thin-film small electrode 42aa that are electrically short-circuited to each other via a pinhole P in a high-dielectric layer 43, a power supply post 61a and a via hole 61b are not formed in the first thin-film small electrode 41aa, and a ground post 62a and a via hole 62b are not formed in the second thin-film small electrode 42aa, either. As a result, the short-circuited small electrodes 41aa and 42aa are electrically connected to neither a power supply line nor a ground line, and become a potential independent from a power supply potential and a ground potential. Therefore, in the thin-film capacitor 40, only the portion where the short-circuited small electrodes 41aa and 42aa sandwich the high dielectric layer 43 loses the capacitor function, and portions where other thin-film small electrodes 41a and 42a sandwich the high dielectric layer 43 maintain the capacitor function.