Abstract:
A semiconductor device has a first semiconductor die including a first protection circuit. A second semiconductor die including a second protection circuit is disposed over the first semiconductor die. A portion of the first semiconductor die and second semiconductor die is removed to reduce die thickness. An interconnect structure is formed to commonly connect the first protection circuit and second protection circuit. A transient condition incident to the interconnect structure is collectively discharged through the first protection circuit and second protection circuit. Any number of semiconductor die with protection circuits can be stacked and interconnected via the interconnect structure to increase the ESD current discharge capability. The die stacking can be achieved by disposing a first semiconductor wafer over a second semiconductor wafer and then singulating the wafers. Alternatively, die-to-wafer or die-to-die assembly is used.
Abstract:
A device includes a first semiconductor chip including a first face, wherein a first contact pad is arranged over the first face. The device further includes a second semiconductor chip including a first face, wherein a first contact pad is arranged over the first face, wherein the first semiconductor chip and the second semiconductor chip are arranged such that the first face of the first semiconductor chip faces in a first direction and the first face of the second semiconductor chip faces in a second direction opposite to the first direction. The first semiconductor chip is located laterally outside of an outline of the second semiconductor chip.
Abstract:
A method for fabricating a semiconductor device includes: providing a substrate layer stack including a substrate with a metallic upper surface, a first Ni containing layer disposed on the substrate, and a first Sn layer on the first Ni containing layer; depositing a first semiconductor layer stack on the first Sn layer and that includes a first NiP layer, a first semiconductor die disposed on the first NiP layer, and a second NiP layer disposed on the first semiconductor die; depositing a second semiconductor layer stack on the first semiconductor layer stack and that includes a second Sn layer, a second Ni containing layer disposed on the second Sn layer, and a second semiconductor die disposed on the second Ni containing layer; and performing a diffusion soldering process for connecting the first semiconductor layer stack to the substrate and the second semiconductor layer stack to the first semiconductor layer stack.
Abstract:
Embodiments of various systems, methods, and devices for gang flipping and individual picking dies are disclosed. The embodiments disclosed herein may be used, for example, in the manufacture of directly bonded devices.
Abstract:
A first bonding material layer is formed on a first substrate and a second bonding material layer is formed on a second substrate. The first and second bonding material layers include a metal. Ions are implanted into the first and second bonding material layers to induce structural damages in the in the first and second bonding material layers. The first and second substrates are bonded by forming a physical contact between the first and second bonding material layers. The structural damages in the first and second bonding material layers enhance diffusion of materials across the interface between the first and second bonding material layers to form a bonded material layer in which metal grains are present across the bonding interface, thereby providing a high adhesion strength across the first and second substrates.
Abstract:
A method includes providing a carrier; applying a dielectric layer to the carrier; applying a metal layer to the dielectric layer; placing a first semiconductor chip on the metal layer with contact pads of the first semiconductor chip facing the metal layer; covering the first semiconductor chip with an encapsulation material; and removing the carrier.
Abstract:
A method includes providing a carrier; applying a dielectric layer to the carrier; applying a metal layer to the dielectric layer; placing a first semiconductor chip on the metal layer with contact pads of the first semiconductor chip facing the metal layer; covering the first semiconductor chip with an encapsulation material; and removing the carrier.
Abstract:
An electronic component includes a first component and a second component, each having a surface that includes a plurality of exposed contacts separated by an insulating material. A sandwich layer is disposed between the surface of the first component and the surface of the second component. The surface of the first component is then attached to the surface of the second component with the sandwich layer therebetween. The sandwich layer forms conductive areas between contacts of the first component and contacts of the second component and forms an insulator between the conductive areas.
Abstract:
A first bonding material layer is formed on a first substrate and a second bonding material layer is formed on a second substrate. The first and second bonding material layers include a metal. Ions are implanted into the first and second bonding material layers to induce structural damages in the in the first and second bonding material layers. The first and second substrates are bonded by forming a physical contact between the first and second bonding material layers. The structural damages in the first and second bonding material layers enhance diffusion of materials across the interface between the first and second bonding material layers to form a bonded material layer in which metal grains are present across the bonding interface, thereby providing a high adhesion strength across the first and second substrates.
Abstract:
A first bonding material layer is formed on a first substrate and a second bonding material layer is formed on a second substrate. The first and second bonding material layers include a metal. Ions are implanted into the first and second bonding material layers to induce structural damages in the in the first and second bonding material layers. The first and second substrates are bonded by forming a physical contact between the first and second bonding material layers. The structural damages in the first and second bonding material layers enhance diffusion of materials across the interface between the first and second bonding material layers to form a bonded material layer in which metal grains are present across the bonding interface, thereby providing a high adhesion strength across the first and second substrates.