Abstract:
Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The structure includes a via formed in a dielectric layer to expose a contact pad and a capture pad formed in the via and over the dielectric layer. The capture pad has openings over the dielectric layer to form segmented features. The solder bump is deposited on the capture pad and the openings over the dielectric layer.
Abstract:
A layer of material can protect a surface of a passivation layer against damage during a final via plug process. The protective layer can be a conductive bump limiting metallurgy (BLM) base layer and can include titanium tungsten (TiW), though other materials can be employed. Examples include applying the protective layer after formation of a via opening and prior to formation of a via opening, and can include applying more protective material after conductor plug formation to enhance protection. Photosensitive and non-photosensitive passivation layers can be so protected.
Abstract:
Solder bump connections and methods for fabricating solder bump connections. A passivation layer is formed on a dielectric layer. A via opening extends through the passivation layer from a top surface of the passivation layer to a metal line in the dielectric layer. A mask on the top surface of the passivation layer includes a mask opening that is aligned with the via opening. A conductive layer is selectively formed in the via opening and the mask opening. The conductive layer projects above the top surface of the passivation layer. The method further includes planarizing the passivation layer and the conductive layer to define a plug in the via opening that is coupled with the metal line.
Abstract:
Chip connection structures and related methods of forming such structures are disclosed. In one case, an interconnect structure is disclosed, the structure including: a pillar connecting an integrated circuit chip and a substrate, the pillar including a barrier layer, a first copper layer over the barrier layer, and a first solder layer over the first copper layer.
Abstract:
Disclosed are a method for metallization during semiconductor wafer processing and the resulting structures. In this method, a passivation layer is patterned with first openings aligned above and extending vertically to metal structures below. A mask layer is formed and patterned with second openings aligned above the first openings, thereby forming two-tier openings extending vertically through the mask layer and passivation layer to the metal structures below. An electrodeposition process forms, in the two-tier openings, both under-bump pad(s) and additional metal feature(s), which are different from the under-bump pad(s) (e.g., a wirebond pad; a final vertical section of a crackstop structure; and/or a probe pad). Each under-bump pad and additional metal feature initially comprises copper with metal cap layers thereon. The mask layer is removed, an additional mask layer is formed and patterned with third opening(s) exposing only the under-bump pad(s) and solder material is deposited on the under-bump pad(s).
Abstract:
A test wafer is disclosed with a first side configured to have integrated circuits formed thereon and a second side with a test structure formed thereon. The test wafer can include electrical test structures embedded in the second side of the wafer. An electrical test of the test wafer can be performed after handling by a tool used in a wafer manufacturing process to determine if the tool caused a defect on the second side of the wafer. The test structure can include a blanket layer disposed on the second side of the wafer. The test wafer can then be exposed to a wet etch and inspected thereafter for the presence of an ingress path caused from the etch chemistry. The presence of an ingress path is an indication that the tool used prior to the wet etch caused a defect in the wafer.
Abstract:
Structures and methods for forming good electrical connections between an integrated circuit (IC) chip and a chip carrier of a flip chip package include forming one of: a tensile layer on a front side of the IC chip, which faces a tops surface of the chip carrier, and a compressive layer on the backside of the IC chip. Addition of one of: a tensile layer to the front side of the IC chip and a compressive layer the backside of the IC chip, may reduce or modulate warpage of the IC chip and enhance wetting of opposing solder surfaces of solder bumps on the IC chip and solder formed on flip chip (FC) attaches of a chip carrier during making of the flip chip package.
Abstract:
A method forming an interconnect structure includes depositing a first solder bump on a chip; depositing a second solder bump on a laminate, the second solder bump including a nickel copper colloid surrounded by a nickel or copper shell and suspended in a tin-based solder; aligning the chip with the laminate; performing a first reflow process to join the chip to the laminate; depositing an underfill material around the first solder bump and the second solder bump; and performing a second reflow process at a temperature that is lower than the first reflow process to convert the first solder bump and the second solder bump to an all intermetallic interconnect; wherein depositing the underfill material is performed before or after performing the second reflow process.
Abstract:
An embodiment of the invention may include a semiconductor structure, and method of forming the semiconductor structure. The semiconductor structure may include a first set of pillars located on a first substrate. The semiconductor structure may include a second set of pillars located on a second substrate. The semiconductor structure may include a joining layer connecting the first pillar to the second pillar. The semiconductor structure may include an underfill layer located between the first and second substrate.
Abstract:
A spacer structure formed adjacent a solder connection which prevents solder extrusion and methods of manufacture are disclosed. The method includes forming a solder preform connection on a bond pad of a chip. The method further includes forming a spacer structure on sidewalls of the solder preform connection. The method further includes subjecting the solder preform connection to a predetermined temperature to form a solder connection with the spacer structure remaining thereabout.