Abstract:
A method for making an integrated circuit package includes providing a handle wafer having a first region defining a cavity. A capacitor is formed in the first region. The capacitor has a pair of electrodes, each coupled to one of a pair of conductive pads, at least one of which is disposed on a lower surface of the handle wafer. An interposer having an upper surface with a conductive pad and at least one semiconductor die disposed thereon is also provided. The die has an integrated circuit that is electroconductively coupled to a redistribution layer (RDL) of the interposer. The lower surface of the handle wafer is bonded to the upper surface of the interposer such that the die is disposed below or within the cavity and the electroconductive pad of the handle wafer is bonded to the electroconductive pad of the interposer in a metal-to-metal bond.
Abstract:
An interposer (110) has contact pads at the top and/or bottom surfaces for connection to circuit modules (e.g. ICs 112). The interposer includes a substrate made of multiple layers (110.i). Each layer can be a substrate (110S), possibly a ceramic substrate, with circuitry. The substrates extend vertically. Multiple interposers are fabricated in a single structure (310) made of vertical layers (310.i) corresponding to the interposers' layers. The structure is diced along horizontal planes (314) to provide the interposers. An interposer's vertical conductive lines (similar to through-substrate vias) can be formed on the substrates' surfaces before dicing and before all the substrates are attached to each other. Thus, there is no need to make through-substrate holes for the vertical conductive lines. Non-vertical features can also be formed on the substrates' surfaces before the substrates are attached to each other. Other embodiments are also provided.
Abstract:
In one embodiment, a method for making a 3D Metal-Insulator-Metal (MIM) capacitor includes providing a substrate having a surface, forming an array of upstanding rods or ridges on the surface, depositing a first layer of an electroconductor on the surface and the array of rods or ridges, coating the first electroconductive layer with a layer of a dielectric, and depositing a second layer of an electroconductor on the dielectric layer. In some embodiments, the array of rods or ridges can be made of a photoresist material, and in others, can comprise bonded wires.
Abstract:
A contact pad includes a solder-wettable porous network (310) which wicks the molten solder (130) and thus restricts the lateral spread of the solder, thus preventing solder bridging between adjacent contact pads.
Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion of a solder ball's surface is melted when the connection is formed on one structure and/or when the connection is being attached to another structure. In some embodiments, non-solder balls are joined by an intermediate solder ball (140i). A solder connection may be surrounded by a solder locking layer (1210) and may be recessed in a hole (1230) in that layer. Other features are also provided.
Abstract:
An apparatus relates generally to a three-dimensional stacked integrated circuit. In such an apparatus, the three-dimensional stacked integrated circuit has at least a first die and a second die interconnected to one another using die-to-die interconnects. A substrate of the first die has at least one thermal via structure extending from a lower surface of the substrate toward a well of the substrate without extending to the well and without extending through the substrate. A first end of the at least one thermal via structure is at least sufficiently proximate to the well of the substrate for conduction of heat away therefrom. The substrate has at least one through substrate via structure extending from the lower surface of the substrate to an upper surface of the substrate. A second end of the at least one thermal via structure is coupled to at least one through die via structure of the second die for thermal conductivity.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
Die (110) are attached to an interposer (420), and the interposer/die assembly is placed into a lid cavity (510). The lid (210) is attached to the top of the assembly, possibly to the encapsulant (474) at the top. The lid's legs (520) surround the cavity and extend down below the top surface of the interposer's substrate (420S), possibly to the level of the bottom surface of the substrate or lower. The legs (520) may or may not be attached to the interposer/die assembly. In fabrication, the interposer wafer (420SW) has trenches (478) which receive the lid's legs during the lid placement. The interposer wafer is later thinned to remove the interposer wafer portion below the legs and to dice the interposer wafer. The thinning process also exposes, on the bottom, conductive vias (450) passing through the interposer substrate. Other features are also provided.
Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion of a solder ball's surface is melted when the connection is formed on one structure and/or when the connection is being attached to another structure. In some embodiments, non-solder balls are joined by an intermediate solder ball (140i). A solder connection may be surrounded by a solder locking layer (1210) and may be recessed in a hole (1230) in that layer. Other features are also provided.
Abstract:
Integrated circuits (ICs 110) are attached to a wafer (120W). A stabilization layer (404) is formed over the wafer to strengthen the structure for further processing. Unlike a conventional mold compound, the stabilization layer is separated from at least some wafer areas around the ICs by one or more gap regions (450) to reduce the thermo-mechanical stress on the wafer and hence the wafer warpage. Alternatively or in addition, the stabilization layer can be a porous material having a low horizontal elastic modulus to reduce the wafer warpage, but having a high flexural modulus to reduce warpage and otherwise strengthen the structure for further processing. Other features and advantages are also provided.