Abstract:
A semiconductor device has a base substrate with first and second etch-resistant conductive layers formed over opposing surfaces of the base substrate. First cavities are etched in the base substrate through an opening in the first conductive layer. The first cavities have a width greater than a width of the opening in the first conductive layer. Second cavities are etched in the base substrate between portions of the first or second conductive layer. A semiconductor die is mounted over the base substrate with bumps disposed over the first conductive layer. The bumps are reflowed to electrically connect to the first conductive layer and cause bump material to flow into the first cavities. An encapsulant is deposited over the die and base substrate. A portion of the base substrate is removed down to the second cavities to form electrically isolated base leads between the first and second conductive layers.
Abstract:
A semiconductor device comprises a first semiconductor die. An encapsulant is disposed around the first semiconductor die. A first stepped interconnect structure is disposed over a first surface of the encapsulant. An opening is formed in the first stepped interconnect structure. The opening in the first stepped interconnect structure is over the first semiconductor die. A second semiconductor die is disposed in the opening of the first stepped interconnect structure. A second stepped interconnect structure is disposed over the first stepped interconnect structure. A conductive pillar is formed through the encapsulant.
Abstract:
A semiconductor device is made by providing a sacrificial substrate and depositing an adhesive layer over the sacrificial substrate. A first conductive layer is formed over the adhesive layer. A polymer pillar is formed over the first conductive layer. A second conductive layer is formed over the polymer pillar to create a conductive pillar with inner polymer core. A semiconductor die or component is mounted over the substrate. An encapsulant is deposited over the semiconductor die or component and around the conductive pillar. A first interconnect structure is formed over a first side of the encapsulant. The first interconnect structure is electrically connected to the conductive pillar. The sacrificial substrate and adhesive layers are removed. A second interconnect structure is formed over a second side of the encapsulant opposite the first interconnect structure. The second interconnect structure is electrically connected to the conductive pillar.
Abstract:
A semiconductor wafer has a plurality of semiconductor die separated by a peripheral region. A trench is formed in the peripheral region of the wafer. A via is formed on the die. The trench extends to and is continuous with the via. A first conductive layer is deposited in the trench and via to form conductive TSV. The first conductive layer is conformally applied or completely fills the trench and via. The trench has a larger area than the vias which accelerates formation of the first conductive layer. A second conductive layer is deposited over a front surface of the die. The second conductive layer is electrically connected to the first conductive layer. The first and second conductive layers can be formed simultaneously. A portion of a back surface of the wafer is removed to expose the first conductive layer. The die can be electrically interconnected through the TSVs.
Abstract:
A semiconductor wafer contains a plurality of semiconductor die separated by a non-active area of the semiconductor wafer. A plurality of contact pads is formed on an active surface of the semiconductor die. A first insulating layer is formed over the semiconductor wafer. A portion of the first insulating layer is removed to expose the contact pads on the semiconductor die. An opening is formed partially through the semiconductor wafer in the active surface of the semiconductor die or in the non-active area of the semiconductor wafer. A second insulating layer is formed in the opening in the semiconductor wafer. A shielding layer is formed over the active surface. The shielding layer extends into the opening of the semiconductor wafer to form a conductive via. A portion of a back surface of the semiconductor wafer is removed to singulate the semiconductor die.
Abstract:
A semiconductor device has a plurality of bumps formed over a carrier. A semiconductor die is mounted to the carrier between the bumps. A penetrable film encapsulant layer having a base layer, first adhesive layer, and second adhesive layer is placed over the semiconductor die and bumps. The penetrable film encapsulant layer is pressed over the semiconductor die and bumps to embed the semiconductor die and bumps within the first and second adhesive layers. The first adhesive layer and second adhesive layer are separated to remove the base layer and first adhesive layer and leave the second adhesive layer around the semiconductor die and bumps. The bumps are exposed from the second adhesive layer. The carrier is removed. An interconnect structure is formed over the semiconductor die and second adhesive layer. A conductive layer is formed over the second adhesive layer electrically connected to the bumps.
Abstract:
A semiconductor device has a first semiconductor die mounted over a carrier. An interposer frame has an opening in the interposer frame and a plurality of conductive pillars formed over the interposer frame. The interposer is mounted over the carrier and first die with the conductive pillars disposed around the die. A cavity can be formed in the interposer frame to contain a portion of the first die. An encapsulant is deposited through the opening in the interposer frame over the carrier and first die. Alternatively, the encapsulant is deposited over the carrier and first die and the interposer frame is pressed against the encapsulant. Excess encapsulant exits through the opening in the interposer frame. The carrier is removed. An interconnect structure is formed over the encapsulant and first die. A second semiconductor die can be mounted over the first die or over the interposer frame.
Abstract:
A semiconductor device has a first thermally conductive layer formed over a first surface of a semiconductor die. A second surface of the semiconductor die is mounted to a sacrificial carrier. An encapsulant is deposited over the first thermally conductive layer and sacrificial carrier. The encapsulant is planarized to expose the first thermally conductive layer. A first insulating layer is formed over the second surface of the semiconductor die and a first surface of the encapsulant. A portion of the first insulating layer over the second surface of the semiconductor die is removed. A second thermally conductive layer is formed over the second surface of the semiconductor die within the removed portion of the first insulating layer. An electrically conductive layer is formed within the insulating layer around the second thermally conductive layer. A heat sink can be mounted over the first thermally conductive layer.
Abstract:
A semiconductor device has a semiconductor die mounted over a carrier. An encapsulant is deposited over the semiconductor die and carrier. An insulating layer is formed over the semiconductor die and encapsulant. A plurality of first vias is formed through the insulating layer and semiconductor die while mounted to the carrier. A plurality of second vias is formed through the insulating layer and encapsulant in the same direction as the first vias while the semiconductor die is mounted to the carrier. An electrically conductive material is deposited in the first vias to form conductive TSV and in the second vias to form conductive TMV. A first interconnect structure is formed over the insulating layer and electrically connected to the TSV and TMV. The carrier is removed. A second interconnect structure is formed over the semiconductor die and encapsulant and electrically connected to the TSV and TMV.
Abstract:
A semiconductor device has a plurality of conductive vias formed partially through a substrate. A conductive layer is formed over the substrate and electrically connected to the conductive vias. A semiconductor die is mounted over the substrate. An encapsulant is deposited over the semiconductor die and substrate. A trench is formed through the encapsulant around the semiconductor die. A shielding layer is formed over the encapsulant. The trench is formed partially through the substrate and the shielding layer is formed in the trench partially through the substrate. An insulating layer can be formed in the trench prior to forming the shielding layer. A portion of the substrate is removed to expose the conductive vias. An interconnect structure is formed over the substrate opposite the semiconductor die. The interconnect structure is electrically connected to the conductive vias. The shielding layer is electrically connected to the interconnect structure.