摘要:
The present invention relates to an activation composition for activation of silicon substrates, which is an aqueous solution comprising a source of palladium ions, a source of fluoride ions and at least two aromatic acids. The present invention further relates to a method for its use and optionally for subsequent metallization of such treated substrates. The method can be employed in semiconductor and solar cell manufacturing.
摘要:
The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of source/drain contacts within non-planar transistors, wherein a titanium-containing contact interface may be used in the formation of the source/drain contact with a discreet titanium silicide formed between the titanium-containing interface and a silicon-containing source/drain structure.
摘要:
An integrated circuit containing CMOS gates and a counterdoped polysilicon gate material resistor which has a body region that is implanted concurrently with the NSD layers of the NMOS transistors of the CMOS gates and concurrently with the PSD layers of the PMOS transistors of the CMOS gates, and has a resistor silicide block layer over the body region which is formed of separate material from the sidewall spacers on the CMOS gates. A process of forming an integrated circuit containing CMOS gates and a counterdoped polysilicon gate material resistor which implants the body region of the resistor concurrently with the NSD layers of the NMOS transistors of the CMOS gates and concurrently with the PSD layers of the PMOS transistors of the CMOS gates, and forms a resistor silicide block layer over the body region of separate material from the sidewall spacers on the CMOS gates.
摘要:
Metallic layers can be selectively deposited on surfaces of a substrate relative to a second surface of the substrate. In preferred embodiments, the metallic layers are selectively deposited on copper instead of insulating or dielectric materials. In preferred embodiments, a first precursor forms a layer or adsorbed species on the first surface and is subsequently reacted or converted to form a metallic layer. Preferably the deposition temperature is selected such that a selectivity of above about 90% is achieved.
摘要:
A method of manufacturing a semiconductor device includes forming a first plurality of recessed regions in a substrate, the substrate having a protruded active region between the first plurality of recessed regions and the protruded active region having an upper surface and a sidewall, forming a device isolation film in the first plurality of recessed regions, the device isolation film exposing the upper surface and an upper portion of the sidewall of the protruded active region, and performing a first plasma treatment on the exposed surface of the protruded active region, wherein the plasma treatment is performed using a plasma gas containing at least one of an inert gas and a hydrogen gas in a temperature of less than or equal to about 700° C.
摘要:
An integrated circuit and method includes self-aligned contacts. A gapfill dielectric layer fills spaces between sidewalls of adjacent MOS gates. The gapfill dielectric layer is planarized down to tops of gate structures. A contact pattern is formed that exposes an area for multiple self-aligned contacts. The area overlaps adjacent instances of the gate structures. The gapfill dielectric layer is removed from the area. A contact metal layer is formed in the areas where the gapfill dielectric material has been removed. The contact metal abuts the sidewalls along the height of the sidewalls. The contact metal is planarized down to the tops of the gate structures, forming the self-aligned contacts.
摘要:
A method of forming a contact structure of a gate structure is provided. In the method, an oxidation layer and a first sidewall layer disposed between a first metal gate and a second metal gate are etched to expose an underlying silicon substrate. A silicide portion defined by a contact profile is deposited in the exposed portion of the silicon substrate. A second sidewall layer substantially covers the first sidewall layer and at least partially covering the silicide portion is formed after depositing the silicide portion. A metal glue layer is deposited around the first metal gate and the second metal gate defining a trench above the silicide portion. A metal plug is deposited within the trench.
摘要:
In an embodiment of the present disclosure, a method of manufacturing a semiconductor device may include forming a pattern group on a substrate, the substrate being divided into first and second regions, each pattern including a silicon layer, forming an insulating pattern on the substrate, the insulating pattern partially exposing the silicon layer on the first region and blocking the silicon layer on the second region, converting the exposed silicon layer on the first region to a silicide layer while the blocked silicon layer on the second region is protected from the conversion, and performing a subsequent process using, as an overlay vernier, at least a portion of the pattern group formed on the second region.
摘要:
An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
摘要:
Disclosed is a method of manufacturing a semiconductor device including: performing a pre-process to a substrate, on a surface of which a metal film or a GST film is formed, such that a first film is formed on the metal film or the GST film by executing at least one cycle of alternately performing (i) supplying a first processing gas, and (ii) supplying a second processing gas that is not activated by plasma excitation; and performing a formation process to the substrate to which the pre-process has been performed such that a second film is formed on the first film by executing at least one cycle of alternately (i) supplying the first processing gas, and (ii) supplying the second processing gas that is activated by plasma excitation.