Abstract:
A printed circuit board having stepped conduction layer includes at least one conduction layer configured for use as a signal transmission layer, the at least one conduction layer being divided into at least two base regions and at least one connecting region connecting any adjacent two of the base regions, and the connecting region being stepped to a lower height than those of the base regions. A lower surface of the connecting region lies on a same plane as a lower surface of the base region, or an upper surface of the connecting region lies on a same plane as an upper surface of the base region. A bridge connecting structure between the connecting regions and the base regions is disposed in possible noise transfer paths between a noise source and a noise attenuation target positioned on the printed circuit board.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post and a base. The semiconductor device extends into a cavity in the post, is electrically connected to the conductive trace and is thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, and the base extends laterally from the post. The adhesive extends between the post and the conductive trace and between the base and the conductive trace. The conductive trace is located outside the cavity and provides signal routing between a pad and a terminal.
Abstract:
Disclosed herein is a method of manufacturing a circuit board. The method of manufacturing a circuit board according to a preferred embodiment of the present invention is configured to include (A) forming a cavity 115 for a bump on one surface 111 of a carrier 110, (B) forming a bump 130 in the cavity 115 for the bump through an electroplating process, (C) laminating an insulating layer 140 on one surface 111 of the carrier 110 so as to apply the bump 130, (D) forming a circuit layer 150 including a via 155 connected with the bump 130 on the insulating layer 140, and (E) removing the carrier 110, whereby the process of forming separate solder balls is removed by forming the cavities 111 for the bumps in the carriers 110 to form the bumps, thereby simplifying the process of manufacturing a circuit board and reducing the lead time.
Abstract:
A multilayer printed wiring board includes a multilayered structure having conductor circuit layers and interlaminar insulative layers, the interlaminar insulative layers including an outermost interlaminar insulative layer, the conductor circuit layers including an outermost conductor circuit layer formed over the outermost interlaminar insulative, a filled-viahole formed in the outermost interlaminar insulative layer and having one or more metal plating fillings and completely closing a hole formed through the outermost interlaminar insulative layer such that the metal plating of the filled-viahole extends out of the hole and forms a substantially flat surface, and solder bumps including a first solder bump formed on the substantially flat surface of the filled-viahole and a second solder bump formed on a surface portion in the outermost conductor circuit layer. The substantially flat surface of the filled-viahole is leveled substantially at the same height as the surface portion of the outermost conductor circuit layer.
Abstract:
A light emitting diode substrate assembly has a metal substrate, a circuit board, multiple chip strings, an annular wall and an encapsulant. The circuit board is mounted on the top surface of the substrate and has multiple through holes and multiple current conducting lines. The chip strings are mounted on the substrate and respectively in the through hole in the circuit board. Each chip string has at least one light emitting diode chip connected electrically to two corresponding current conducting lines on the circuit board with bonding wires. Accordingly, the heat generating during the operation of the chips can be efficiently dissipated from the substrate.
Abstract:
A thermal pad (602, 612, 622, 702, 712) formed on a Printed Circuit Board and a method (900) of formed the thermal pad (602, 612, 622, 702, 712) are provided. The thermal pad (602, 612, 622, 702, 712) comprises in its interior one or more coins (604, 614, 624, 704, 714) has a height equal to a thickness of the PCB, and is made of metal or alloy, inserted into a corresponding one of one or more plated cutouts straight through the PCB in the thermal pad, and bonded to side walls of the corresponding one of the one or more plated cutouts with a paste capable of resisting a temperature of 250° C. or above. The plurality of through via (606, 616, 626, 706, 716) are plated, and lugged with a solder mask. The thermal pad (602, 612, 622, 702, 712) has a flat top surface and a flat bottom surface, either of which is coplanar with a corresponding one of top and bottom surfaces of the PCB. A PCB having formed thereon the above thermal pad (602, 612, 622, 702, 712) is also provided.
Abstract:
A leadframe employed by a leadless package comprises a plurality of package units and an adhesive tape. Each of the package units has a die pad with a plurality of openings and a plurality of pins disposed in the plurality of openings. The adhesive tape is adhered to the surfaces of the plurality of package units and fixes the die pad and the plurality of pins.
Abstract:
An object of the present invention is to provide a multilayered printed circuit board having a short wiring distance of the conductor circuits, wide option of the design of the conductor circuits and additionally excellent in reliability since cracking scarcely takes place in the interlaminar resin insulating layers in the vicinity of via-holes. The present invention is a multilayered printed circuit board comprising: a conductor circuit and an interlaminar resin insulating layer serially formed on a substrate in alternate fashion and in repetition, wherein a connection of the conductor circuits through the interlaminar resin insulating layers is performed by a via-hole, wherein via-holes in different level layers among the via-holes are formed so as to form a stack-via structure, and wherein at least one of the land diameters of the above-mentioned via-holes in different level layers having the stack via structure is different from the land diameters of other via-holes.
Abstract:
A flexible wiring substrate is provided which realizes a fine pitch of a wiring pattern and improves mechanical strength of the wiring pattern so as to prevent breaks or exfoliation of the wiring pattern. A flexible wiring substrate 3 of the present invention includes an insulation tape 6, and a wiring pattern 7 formed on the insulation tape 6. A thickness of the wiring pattern 7 is made thinner in a mounting region, where a semiconductor element is connected to, than in a non-mounting region.
Abstract:
A light emitting diode module includes: a printed circuit board including an upper circuit layer, a lower metal layer, an insulating layer, and a plurality of through holes; a metallic heat sink formed with a plurality of chip-support portions and disposed below the printed circuit board; a thermal connection layer that has lower and upper surfaces respectively bonded to the heat sink and the lower metal layer of the printed circuit board; and a plurality of light emitting diode chips, each of which is placed in contact with and bonded to one of the chip-support portions and each of which is electrically connected to the upper circuit layer. A method for making the light emitting diode module is also disclosed.